62 research outputs found

    Multi-electron SEFs for nuclear reactions involved in advanced stages of stellar evolution

    Full text link
    Multi-electron screening effects encountered in laboratory astrophysical reactions are investigated by considering the reactants Thomas-Fermi atoms. By means of that model, previous studies are extended to derive the corresponding screening enhancement factor (SEF), so that it takes into account ionization, thermal, exchange and relativistic effects. The present study, by imposing a very satisfactory constraint on the possible values of the screening energies and the respective SEFs, corrects the current (and the future) experimental values of the astrophysical factors associated with nuclear reactions involved in advanced stages of stellar evolution.Comment: 13 RevTex pages+6 ps figures; Accepted for publication in Nuclear Physics

    ^7Be(p,γ)^8B cross section and the properties of ^7Be

    Get PDF
    We study the nonresonant part of the ^7Be(p,γ)^8B reaction using a three-cluster resonating group model that is variationally converged and virtually complete in ^4He+^3He+p model space. The importance of using adequate nucleon-nucleon interaction is demonstrated. We find that the low-energy astrophysical S factor is linearly correlated with the quadrupole moment of ^7Be. A range of parameters is found where the most important ^8B, ^7Be, and ^7Li properties are reproduced simultaneously; the corresponding S factor at E_(c.m.)=20 keV is 24.6–26.1 eV b

    Influence of tunneling on electron screening in low energy nuclear reactions in laboratories

    Get PDF
    Using a semiclassical mean field theory, we show that the screening potential exhibits a characteristic radial variation in the tunneling region in sharp contrast to the assumption of the constant shift in all previous works. Also, we show that the explicit treatment of the tunneling region gives a larger screening energy than that in the conventional approach, which studies the time evolution only in the classical region and estimates the screening energy from the screening potential at the external classical turning point. This modification becomes important if the electronic state is not a single adiabatic state at the external turning point either by pre-tunneling transitions of the electronic state or by the symmetry of the system even if there is no essential change with the electronic state in the tunneling region.Comment: 3 figure

    Energy Loss, Electron Screening, and the Astrophysical 3He(d,p)4He cross section

    Get PDF
    We reanalyze the low-energy 3He(d,p)4He cross section measurements of Engstler et al. using recently measured energy loss data for proton and deuteron beams in a helium gas. Although the new 3He(d,p)4He S-factors are significantly lower than those reported by Engstler et al. they clearly show the presence of electron screening effects. From the new S-factors we find an electron screening energy in agreement with the adiabatic limit.Comment: 8 Page RevTeX document, two postscript figures, now in a self-extracting uufile type archiv

    Electron screening in molecular fusion reactions

    Get PDF
    Recent laboratory experiments have measured fusion cross sections at center-of-mass energies low enough for the effects of atomic and molecular electrons to be important. To extract the cross section for bare nuclei from these data (as required for astrophysical applications), it is necessary to understand these screening effects. We study electron screening effects in the low-energy collisions of Z=1 nuclei with hydrogen molecules. Our model is based on a dynamical evolution of the electron wavefunctions within the TDHF scheme, while the motion of the nuclei is treated classically. We find that at the currently accessible energies the screening effects depend strongly on the molecular orientation. The screening is found to be larger for molecular targets than for atomic targets, due to the reflection symmetry in the latter. The results agree fairly well with data measured for deuteron collisions on molecular deuterium and tritium targets.Comment: 15 Page RevTeX document, twelve postscript figures, now in a uufile packag

    Influence of the Electronic Chaotic Motion on the Fusion Dynamics at Astrophysical Energies

    Full text link
    We perform semi-classical molecular dynamics simulations of screening by bound electrons in low energy nuclear reactions. In our simulations quantum effects corresponding to the Pauli and Heisenberg principle are enforced by constraints. In addition to the well known adiabatic and sudden limits, we propose a new "dissipative limit" which is expected to be important not only at high energies but in the extremely low energy region. The dissipative limit is associated with the chaotic behavior of the electronic motion. It affects also the magnitude of the enhancement factor. We discuss also numerical experiments using polarized targets. The derived enhancement factors in our simulation are in agreement with those extracted within the RR-matrix approach.Comment: 17 pages, 9 figure

    Atomic effects in astrophysical nuclear reactions

    Get PDF
    Two models are presented for the description of the electron screening effects that appear in laboratory nuclear reactions at astrophysical energies. The two-electron screening energy of the first model agrees very well with the recent LUNA experimental result for the break-up reaction He3(He3,2p)He4% He3(He3,2p)He^{4}, which so far defies all available theoretical models. Moreover, multi-electron effects that enhance laboratory reactions of the CNO cycle and other advanced nuclear burning stages, are also studied by means of the Thomas-Fermi model, deriving analytical formulae that establish a lower and upper limit for the associated screening energy. The results of the second model, which show a very satisfactory compatibility with the adiabatic approximation ones, are expected to be particularly useful in future experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production

    Small Effects in Astrophysical Fusion Reactions

    Get PDF
    We study the combined effects of vacuum polarization, relativity, Bremsstrahlung, and atomic polarization in nuclear reactions of astrophysical interest. It is shown that these effects do not solve the longstanding differences between the experimental data of astrophysical nuclear reactions at very low energies and the theoretical calculations which aim to include electron screening.Comment: 13 pages, 1 figur
    corecore