609 research outputs found
Bi-log-concave distribution functions
Nonparametric statistics for distribution functions F or densities f=F' under
qualitative shape constraints provides an interesting alternative to classical
parametric or entirely nonparametric approaches. We contribute to this area by
considering a new shape constraint: F is said to be bi-log-concave, if both
log(F) and log(1 - F) are concave. Many commonly considered distributions are
compatible with this constraint. For instance, any c.d.f. F with log-concave
density f = F' is bi-log-concave. But in contrast to the latter constraint,
bi-log-concavity allows for multimodal densities. We provide various
characterizations. It is shown that combining any nonparametric confidence band
for F with the new shape-constraint leads to substantial improvements,
particularly in the tails. To pinpoint this, we show that these confidence
bands imply non-trivial confidence bounds for arbitrary moments and the moment
generating function of F
Strong Approximation of Empirical Copula Processes by Gaussian Processes
We provide the strong approximation of empirical copula processes by a
Gaussian process. In addition we establish a strong approximation of the
smoothed empirical copula processes and a law of iterated logarithm
Random walks - a sequential approach
In this paper sequential monitoring schemes to detect nonparametric drifts
are studied for the random walk case. The procedure is based on a kernel
smoother. As a by-product we obtain the asymptotics of the Nadaraya-Watson
estimator and its as- sociated sequential partial sum process under
non-standard sampling. The asymptotic behavior differs substantially from the
stationary situation, if there is a unit root (random walk component). To
obtain meaningful asymptotic results we consider local nonpara- metric
alternatives for the drift component. It turns out that the rate of convergence
at which the drift vanishes determines whether the asymptotic properties of the
monitoring procedure are determined by a deterministic or random function.
Further, we provide a theoretical result about the optimal kernel for a given
alternative
Inconsistency of the MLE for the joint distribution of interval censored survival times and continuous marks
This paper considers the nonparametric maximum likelihood estimator (MLE) for
the joint distribution function of an interval censored survival time and a
continuous mark variable. We provide a new explicit formula for the MLE in this
problem. We use this formula and the mark specific cumulative hazard function
of Huang and Louis (1998) to obtain the almost sure limit of the MLE. This
result leads to necessary and sufficient conditions for consistency of the MLE
which imply that the MLE is inconsistent in general. We show that the
inconsistency can be repaired by discretizing the marks. Our theoretical
results are supported by simulations.Comment: 27 pages, 4 figure
An Edgeworth expansion for finite population L-statistics
In this paper, we consider the one-term Edgeworth expansion for finite
population L-statistics. We provide an explicit formula for the Edgeworth
correction term and give sufficient conditions for the validity of the
expansion which are expressed in terms of the weight function that defines the
statistics and moment conditions.Comment: 14 pages. Minor revisions. Some explanatory comments and a numerical
example were added. Lith. Math. J. (to appear
Semiparametric theory and empirical processes in causal inference
In this paper we review important aspects of semiparametric theory and
empirical processes that arise in causal inference problems. We begin with a
brief introduction to the general problem of causal inference, and go on to
discuss estimation and inference for causal effects under semiparametric
models, which allow parts of the data-generating process to be unrestricted if
they are not of particular interest (i.e., nuisance functions). These models
are very useful in causal problems because the outcome process is often complex
and difficult to model, and there may only be information available about the
treatment process (at best). Semiparametric theory gives a framework for
benchmarking efficiency and constructing estimators in such settings. In the
second part of the paper we discuss empirical process theory, which provides
powerful tools for understanding the asymptotic behavior of semiparametric
estimators that depend on flexible nonparametric estimators of nuisance
functions. These tools are crucial for incorporating machine learning and other
modern methods into causal inference analyses. We conclude by examining related
extensions and future directions for work in semiparametric causal inference
Robustness Regions for Measures of Risk Aggregation
One of risk measures key purposes is to consistently rank and distinguish between different risk profiles. From a practical perspective, a risk measure should also be robust, that is, insensitive to small perturbations in input assumptions. It is known in the literature [14, 39], that strong assumptions on the risk measures ability to distinguish between risks may lead to a lack of robustness. We address the trade-off between robustness and consistent risk ranking by specifying the regions in the space of distribution functions, where law-invariant convex risk measures are indeed robust. Examples include the set of random variables with bounded second moment and those that are less volatile (in convex order) than random variables in a given uniformly integrable set. Typically, a risk measure is evaluated on the output of an aggregation function defined on a set of random input vectors. Extending the definition of robustness to this setting, we find that law-invariant convex risk measures are robust for any aggregation function that satisfies a linear growth condition in the tail, provided that the set of possible marginals is uniformly integrable. Thus, we obtain that all law-invariant convex risk measures possess the aggregation-robustness property introduced by [26] further studied by [40]. This is in contrast to the widely-used, non-convex, risk measure Value-at-Risk, whose robustness in a risk aggregation context requires restricting the possible dependence structures of the input vectors
On the asymptotic normality of kernel estimators of the long run covariance of functional time series
We consider the asymptotic normality in L2 of kernel estimators of the long run covariance of stationary functional time series. Our results are established assuming a weakly dependent Bernoulli shift structure for the underlying observations, which contains most stationary functional time series models, under mild conditions. As a corollary, we obtain joint asymptotics for functional principal components computed from empirical long run covariance operators, showing that they have the favorable property of being asymptotically independent
Probing Loop Quantum Gravity with Evaporating Black Holes
This letter aims at showing that the observation of evaporating black holes
should allow distinguishing between the usual Hawking behavior and Loop Quantum
Gravity (LQG) expectations. We present a full Monte-Carlo simulation of the
evaporation in LQG and statistical tests that discriminate between competing
models. We conclude that contrarily to what was commonly thought, the
discreteness of the area in LQG leads to characteristic features that qualify
evaporating black holes as objects that could reveal quantum gravity
footprints.Comment: 5 pages, 3 figures. Version accpeted by Phys. Rev. Let
- …
