191 research outputs found
Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis
Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies
Altered multisensory temporal integration in obesity
Eating is a multisensory behavior. The act of placing food in the mouth provides us with a variety of sensory information, including gustatory, olfactory, somatosensory, visual, and auditory. Evidence suggests altered eating behavior in obesity. Nonetheless, multisensory integration in obesity has been scantily investigated so far. Starting from this gap in the literature, we seek to provide the first comprehensive investigation of multisensory integration in obesity. Twenty male obese participants and twenty male healthy-weight participants took part in the study aimed at describing the multisensory temporal binding window (TBW). The TBW is defined as the range of stimulus onset asynchrony in which multiple sensory inputs have a high probability of being integrated. To investigate possible multisensory temporal processing deficits in obesity, we investigated performance in two multisensory audiovisual temporal tasks, namely simultaneity judgment and temporal order judgment. Results showed a wider TBW in obese participants as compared to healthy-weight controls. This holds true for both the simultaneity judgment and the temporal order judgment tasks. An explanatory hypothesis would regard the effect of metabolic alterations and low-grade inflammatory state, clinically observed in obesity, on the temporal organization of brain ongoing activity, which one of the neural mechanisms enabling multisensory integration
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Egocentric and allocentric representations in auditory cortex
A key function of the brain is to provide a stable representation of an object’s location in the world. In hearing, sound azimuth and elevation are encoded by neurons throughout the auditory system, and auditory cortex is necessary for sound localization. However, the coordinate frame in which neurons represent sound space remains undefined: classical spatial receptive fields in head-fixed subjects can be explained either by sensitivity to sound source location relative to the head (egocentric) or relative to the world (allocentric encoding). This coordinate frame ambiguity can be resolved by studying freely moving subjects; here we recorded spatial receptive fields in the auditory cortex of freely moving ferrets. We found that most spatially tuned neurons represented sound source location relative to the head across changes in head position and direction. In addition, we also recorded a small number of neurons in which sound location was represented in a world-centered coordinate frame. We used measurements of spatial tuning across changes in head position and direction to explore the influence of sound source distance and speed of head movement on auditory cortical activity and spatial tuning. Modulation depth of spatial tuning increased with distance for egocentric but not allocentric units, whereas, for both populations, modulation was stronger at faster movement speeds. Our findings suggest that early auditory cortex primarily represents sound source location relative to ourselves but that a minority of cells can represent sound location in the world independent of our own position
Functional Analysis of Alleged NOGGIN Mutation G92E Disproves Its Pathogenic Relevance
We identified an amino acid change (p.G92E) in the Bone Morphogenetic Protein antagonist NOGGIN in a 22-month-old boy who presented with a unilateral brachydactyly type B phenotype. Brachydactyly type B is a skeletal malformation that has been associated with increased Bone Morphogenetic Protein pathway activation in other patients. Previously, the amino acid change p.G92E in NOGGIN was described as causing fibrodysplasia ossificans progressiva, a rare genetic disorder characterized by limb malformations and progressive heterotopic bone formation in soft tissues that, like Brachydactyly type B, is caused by increased activation of Bone Morphogenetic Protein signaling. To determine whether G92E-NOGGIN shows impaired antagonism that could lead to increased Bone Morphogenetic Protein signaling, we performed functional assays to evaluate inhibition of BMP signaling. Interestingly, wt-NOGGIN shows different inhibition efficacies towards various Bone Morphogenetic Proteins that are known to be essential in limb development. However, comparing the biological activity of G92E-NOGGIN with wt-NOGGIN, we observed that G92E-NOGGIN inhibits activation of bone morphogenetic protein signaling with equal efficiency as wt-NOGGIN, supporting that G92E-NOGGIN does not cause pathological effects. Genetic testing of the child's parents revealed the same amino acid change in the healthy father, further supporting that p.G92E is a neutral amino acid substitution in NOGGIN. We conclude that p.G92E represents a rare polymorphism of the NOGGIN gene - causing neither brachydactyly nor fibrodysplasia ossificans progressiva. This study highlights that a given genetic variation should not be considered pathogenic unless supported by functional analyses
Obatoclax induces Atg7-dependent autophagy independent of beclin-1 and BAX/BAK
Direct pharmacological targeting of the anti-apoptotic B-cell lymphoma-2 (BCL-2) family is an attractive therapeutic strategy for treating cancer. Obatoclax is a pan-BCL-2 family inhibitor currently in clinical development. Here we show that, although obatoclax can induce mitochondrial apoptosis dependent on BCL-2 associated x protein/BCL-2 antagonist killer (BAX/BAK) consistent with its on-target pharmacodynamics, simultaneous silencing of both BAX and BAK did not abolish acute toxicity or loss of clonogenicity. This is despite complete inhibition of apoptosis. Obatoclax dramatically reduced viability without inducing loss of plasma membrane integrity. This was associated with rapid processing of light chain-3 (LC3) and reduction of S6 kinase phosphorylation, consistent with autophagy. Dramatic ultrastructural vacuolation, not typical of autophagy, was also induced. Silencing of beclin-1 failed to prevent LC3 processing, whereas knockout of autophagy-related (Atg)7 abolished LC3 processing but failed to prevent obatoclax-induced loss of clonogenicity or ultrastructural changes. siRNA silencing of Atg7 in BAX/BAK knockout mouse embryonic fibroblasts did not prevent obatoclax-induced loss of viability. Cells selected for obatoclax resistance evaded apoptosis independent of changes in BCL-2 family expression and displayed reduced LC3 processing. In summary, obatoclax exhibits BAX- and BAK-dependent and -independent mechanisms of toxicity and activation of autophagy. Mechanisms other than autophagy and apoptosis are blocked in obatoclax resistant cells and contribute significantly to obatoclax's anticancer efficacy
Acute hypoxia induces apoptosis of pancreatic β-cell by activation of the unfolded protein response and upregulation of CHOP
The success of pancreatic β-cells transplantation to treat type 1 diabetes has been hindered by massive β-cell dysfunction and loss of β-cells that follows the procedure. Hypoxia-mediated cell death has been considered one of the main difficulties that must be overcome for transplantation to be regarded as a reliable therapy. Here we have investigated the mechanisms underlying β-cell death in response to hypoxia (1% O2). Our studies show that mouse insulinoma cell line 6 (Min6) cells undergo apoptosis with caspase-3 activation occurring as early as 2 h following exposure to hypoxia. Hypoxia induces endoplasmic reticulum stress in Min6 cells leading to activation of the three branches of the unfolded protein response pathway. In response to hypoxia the pro-apoptotic transcription factor C/EBP homologous protein (CHOP) is upregulated. The important role of CHOP in the apoptotic process was highlighted by the rescue of Min6 cells from hypoxia-mediated apoptosis observed in CHOP-knockdown cells. Culturing isolated pancreatic mouse islets at normoxia showed intracellular hypoxia with accumulation of hypoxia-inducible factor-1α and upregulation of CHOP, the latter one occurring as early as 4 h after isolation. Finally, we observed that pancreatic islets of type 2 db/db diabetic mice were more hypoxic than their counterpart in normoglycemic animals. This finding indicates that hypoxia-mediated apoptosis may occur in type 2 diabetes
Inhibition of ER stress-mediated apoptosis in macrophages by nuclear-cytoplasmic relocalization of eEF1A by the HIV-1 Nef protein
HIV-1 Nef protein has key roles at almost all stages of the viral life cycle. We assessed the role of the Nef/eEF1A (eukaryotic translation elongation factor 1-alpha) complex in nucleocytoplasmic shuttling in primary human macrophages. Nuclear retention experiments and inhibition of the exportin-t (Exp-t) pathway suggested that cytoplasmic relocalization of eEF1A, mediated by Exp-t, occurs in Nef-treated monocyte-derived macrophages (MDMs). We observed the presence of tRNA in the Nef/eEF1A complexes. Nucleocytoplasmic relocalization of the Nef/eEF1A complexes prevented stress-induced apoptosis of MDMs treated with brefeldin-A. Blockade of stress-induced apoptosis of MDMs treated with HIV-1 Nef resulted from enhanced nucleocytoplasmic transport of eEF1A with decreased release of mitochondrial cytochrome c, and from increased tRNA binding to cytochrome c, ultimately leading to an inhibition of caspase activation. Our results indicate that HIV-1 Nef, through the nucleocytoplasmic relocalization of eEF1A and tRNAs, enhances resistance to stress-induced apoptosis in primary human macrophages
- …
