2,386 research outputs found
Microstructure and properties of Mg-Al binary alloys
The effects of different amounts of added Al, ranging from 1 % to 9 %, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%, the grain size of the Mg-Al binary alloys decreases dramatically from 3 097 μm to 151 μm with increasing addition of Al. Further addition of Al up to 9% makes the grain size decrease slowly to 111 μm. The α-Mg dendrite arms are also refined. Increasing the amount of added Al decreases the hot cracking susceptibility of the Mg-Al binary alloys remarkably, and enhances the micro-hardness of the α-Mg matrix
Domain Conditioned Adaptation Network
Tremendous research efforts have been made to thrive deep domain adaptation
(DA) by seeking domain-invariant features. Most existing deep DA models only
focus on aligning feature representations of task-specific layers across
domains while integrating a totally shared convolutional architecture for
source and target. However, we argue that such strongly-shared convolutional
layers might be harmful for domain-specific feature learning when source and
target data distribution differs to a large extent. In this paper, we relax a
shared-convnets assumption made by previous DA methods and propose a Domain
Conditioned Adaptation Network (DCAN), which aims to excite distinct
convolutional channels with a domain conditioned channel attention mechanism.
As a result, the critical low-level domain-dependent knowledge could be
explored appropriately. As far as we know, this is the first work to explore
the domain-wise convolutional channel activation for deep DA networks.
Moreover, to effectively align high-level feature distributions across two
domains, we further deploy domain conditioned feature correction blocks after
task-specific layers, which will explicitly correct the domain discrepancy.
Extensive experiments on three cross-domain benchmarks demonstrate the proposed
approach outperforms existing methods by a large margin, especially on very
tough cross-domain learning tasks.Comment: Accepted by AAAI 202
The Side-Effects of the Space Charge Field Introduced by Hollow Electron Beam in the Electron Cooler of CSRm
Electron cooler is used to improve the quality of the beam in synchrotron,
however it also introduces nonlinear electromagnetic field, which cause
tuneshift, tunespread and may drive resonances leading to beam loss. In this
paper the tuneshift and the tunespread caused by nonlinear electromagnetic
field of the hollow electron beam was investigated, and the resonance driving
terms of the nonlinear electromagnetic field was analysed. The differences were
presented comparing with the solid electron beam. The calculations were
performed for ions of energy 1.272MeV stored in CSRm, using the
parameters given in table1. The conclusion is that in this situation nonlinear
field caused by the hollow electron beam do not lead to serious resonances
Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6
Anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered
ferromagnetic insulator, is investigated under an applied hydrostatic pressure
up to 2 GPa. The easy axis direction of the magnetization is inferred from the
AMR saturation feature in the presence and absence of the applied pressure. At
zero applied pressure, the easy axis is along the c-direction or perpendicular
to the layer. Upon application of a hydrostatic pressure>1 GPa, the uniaxial
anisotropy switches to easy-plane anisotropy which drives the equilibrium
magnetization from the c-axis to the ab-plane at zero magnetic field, which
amounts to a giant magnetic anisotropy energy change (>100%). As the
temperature is increased across the Curie temperature, the characteristic AMR
effect gradually decreases and disappears. Our first-principles calculations
confirm the giant magnetic anisotropy energy change with moderate pressure and
assign its origin to the increased off-site spin-orbit interaction of Te atoms
due to a shorter Cr-Te distance. Such a pressure-induced spin reorientation
transition is very rare in three-dimensional ferromagnets, but it may be common
to other layered ferromagnets with similar crystal structures to CGT, and
therefore offers a unique way to control magnetic anisotropy
Electric Field Effect in Multilayer Cr2Ge2Te6: a Ferromagnetic Two-Dimensional Material
The emergence of two-dimensional (2D) materials has attracted a great deal of
attention due to their fascinating physical properties and potential
applications for future nanoelectronic devices. Since the first isolation of
graphene, a Dirac material, a large family of new functional 2D materials have
been discovered and characterized, including insulating 2D boron nitride,
semiconducting 2D transition metal dichalcogenides and black phosphorus, and
superconducting 2D bismuth strontium calcium copper oxide, molybdenum
disulphide and niobium selenide, etc. Here, we report the identification of
ferromagnetic thin flakes of Cr2Ge2Te6 (CGT) with thickness down to a few
nanometers, which provides a very important piece to the van der Waals
structures consisting of various 2D materials. We further demonstrate the giant
modulation of the channel resistance of 2D CGT devices via electric field
effect. Our results illustrate the gate voltage tunability of 2D CGT and the
potential of CGT, a ferromagnetic 2D material, as a new functional quantum
material for applications in future nanoelectronics and spintronics.Comment: To appear in 2D Material
Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping
Energy barrier of oxygen molecule dissociation on carbon nanotube or graphene
with different types of nitrogen doping is investigated using density
functional theory. The results show that the energy barriers can be reduced
efficiently by all types of nitrogen doping in both carbon nanotubes and
graphene. Graphite-like nitrogen and Stone-Wales defect nitrogen decrease the
energy barrier more efficiently than pyridine-like nitrogen, and a dissociation
barrier lower than 0.2 eV can be obtained. Higher nitrogen concentration
reduces the energy barrier much more efficiently for graphite-like nitrogen.
These observations are closely related to partial occupation of {\pi}* orbitals
and change of work functions. Our results thus provide useful insights into the
oxygen reduction reactions.Comment: Accepted by Nanoscal
- …
