322 research outputs found

    The Role of Response Bias in Perceptual Learning

    Get PDF
    Sensory judgments improve with practice. Such perceptual learning is often thought to reflect an increase in perceptual sensitivity. However, it may also represent a decrease in response bias, with unpracticed observers acting in part on a priori hunches rather than sensory evidence. To examine whether this is the case, 55 observers practiced making a basic auditory judgment (yes/no amplitude-modulation detection or forced-choice frequency/amplitude discrimination) over multiple days. With all tasks, bias was present initially, but decreased with practice. Notably, this was the case even on supposedly “bias-free,” 2-alternative forced-choice, tasks. In those tasks, observers did not favor the same response throughout (stationary bias), but did favor whichever response had been correct on previous trials (nonstationary bias). Means of correcting for bias are described. When applied, these showed that at least 13% of perceptual learning on a forced-choice task was due to reduction in bias. In other situations, changes in bias were shown to obscure the true extent of learning, with changes in estimated sensitivity increasing once bias was corrected for. The possible causes of bias and the implications for our understanding of perceptual learning are discussed

    Stochastic stability at the boundary of expanding maps

    Full text link
    We consider endomorphisms of a compact manifold which are expanding except for a finite number of points and prove the existence and uniqueness of a physical measure and its stochastical stability. We also characterize the zero-noise limit measures for a model of the intermittent map and obtain stochastic stability for some values of the parameter. The physical measures are obtained as zero-noise limits which are shown to satisfy Pesin?s Entropy Formula

    Fast-slow partially hyperbolic systems versus Freidlin-Wentzell random systems

    Full text link
    We consider a simple class of fast-slow partially hyperbolic dynamical systems and show that the (properly rescaled) behaviour of the slow variable is very close to a Friedlin--Wentzell type random system for times that are rather long, but much shorter than the metastability scale. Also, we show the possibility of a "sink" with all the Lyapunov exponents positive, a phenomenon that turns out to be related to the lack of absolutely continuity of the central foliation.Comment: To appear in Journal of Statistical Physic

    The Global Renormalization Group Trajectory in a Critical Supersymmetric Field Theory on the Lattice Z^3

    Full text link
    We consider an Euclidean supersymmetric field theory in Z3Z^3 given by a supersymmetric Φ4\Phi^4 perturbation of an underlying massless Gaussian measure on scalar bosonic and Grassmann fields with covariance the Green's function of a (stable) L\'evy random walk in Z3Z^3. The Green's function depends on the L\'evy-Khintchine parameter α=3+ϵ2\alpha={3+\epsilon\over 2} with 0<α<20<\alpha<2. For α=32\alpha ={3\over 2} the Φ4\Phi^{4} interaction is marginal. We prove for α32=ϵ2>0\alpha-{3\over 2}={\epsilon\over 2}>0 sufficiently small and initial parameters held in an appropriate domain the existence of a global renormalization group trajectory uniformly bounded on all renormalization group scales and therefore on lattices which become arbitrarily fine. At the same time we establish the existence of the critical (stable) manifold. The interactions are uniformly bounded away from zero on all scales and therefore we are constructing a non-Gaussian supersymmetric field theory on all scales. The interest of this theory comes from the easily established fact that the Green's function of a (weakly) self-avoiding L\'evy walk in Z3Z^3 is a second moment (two point correlation function) of the supersymmetric measure governing this model. The control of the renormalization group trajectory is a preparation for the study of the asymptotics of this Green's function. The rigorous control of the critical renormalization group trajectory is a preparation for the study of the critical exponents of the (weakly) self-avoiding L\'evy walk in Z3Z^3.Comment: 82 pages, Tex with macros supplied. Revision includes 1. redefinition of norms involving fermions to ensure uniqueness. 2. change in the definition of lattice blocks and lattice polymer activities. 3. Some proofs have been reworked. 4. New lemmas 5.4A, 5.14A, and new Theorem 6.6. 5.Typos corrected.This is the version to appear in Journal of Statistical Physic

    Convergence of random zeros on complex manifolds

    Full text link
    We show that the zeros of random sequences of Gaussian systems of polynomials of increasing degree almost surely converge to the expected limit distribution under very general hypotheses. In particular, the normalized distribution of zeros of systems of m polynomials of degree N, orthonormalized on a regular compact subset K of C^m, almost surely converge to the equilibrium measure on K as the degree N goes to infinity.Comment: 16 page

    Correlations between zeros of a random polynomial

    Full text link
    We obtain exact analytical expressions for correlations between real zeros of the Kac random polynomial. We show that the zeros in the interval (1,1)(-1,1) are asymptotically independent of the zeros outside of this interval, and that the straightened zeros have the same limit translation invariant correlations. Then we calculate the correlations between the straightened zeros of the SO(2) random polynomial.Comment: 31 pages, 2 figures; a revised version of the J. Stat. Phys. pape

    Infinitely Many Stochastically Stable Attractors

    Full text link
    Let f be a diffeomorphism of a compact finite dimensional boundaryless manifold M exhibiting infinitely many coexisting attractors. Assume that each attractor supports a stochastically stable probability measure and that the union of the basins of attraction of each attractor covers Lebesgue almost all points of M. We prove that the time averages of almost all orbits under random perturbations are given by a finite number of probability measures. Moreover these probability measures are close to the probability measures supported by the attractors when the perturbations are close to the original map f.Comment: 14 pages, 2 figure

    Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors

    Full text link
    We consider two dimensional maps preserving a foliation which is uniformly contracting and a one dimensional associated quotient map having exponential convergence to equilibrium (iterates of Lebesgue measure converge exponentially fast to physical measure). We prove that these maps have exponential decay of correlations over a large class of observables. We use this result to deduce exponential decay of correlations for the Poincare maps of a large class of singular hyperbolic flows. From this we deduce logarithm laws for these flows.Comment: 39 pages; 03 figures; proof of Theorem 1 corrected; many typos corrected; improvements on the statements and comments suggested by a referee. Keywords: singular flows, singular-hyperbolic attractor, exponential decay of correlations, exact dimensionality, logarithm la
    corecore