741 research outputs found

    Quantum Graphs II: Some spectral properties of quantum and combinatorial graphs

    Full text link
    The paper deals with some spectral properties of (mostly infinite) quantum and combinatorial graphs. Quantum graphs have been intensively studied lately due to their numerous applications to mesoscopic physics, nanotechnology, optics, and other areas. A Schnol type theorem is proven that allows one to detect that a point belongs to the spectrum when a generalized eigenfunction with an subexponential growth integral estimate is available. A theorem on spectral gap opening for ``decorated'' quantum graphs is established (its analog is known for the combinatorial case). It is also shown that if a periodic combinatorial or quantum graph has a point spectrum, it is generated by compactly supported eigenfunctions (``scars'').Comment: 4 eps figures, LATEX file, 21 pages Revised form: a cut-and-paste blooper fixe

    Quantization of the Riemann Zeta-Function and Cosmology

    Get PDF
    Quantization of the Riemann zeta-function is proposed. We treat the Riemann zeta-function as a symbol of a pseudodifferential operator and study the corresponding classical and quantum field theories. This approach is motivated by the theory of p-adic strings and by recent works on stringy cosmological models. We show that the Lagrangian for the zeta-function field is equivalent to the sum of the Klein-Gordon Lagrangians with masses defined by the zeros of the Riemann zeta-function. Quantization of the mathematics of Fermat-Wiles and the Langlands program is indicated. The Beilinson conjectures on the values of L-functions of motives are interpreted as dealing with the cosmological constant problem. Possible cosmological applications of the zeta-function field theory are discussed.Comment: 14 pages, corrected typos, references and comments adde

    Detailed balance in Horava-Lifshitz gravity

    Full text link
    We study Horava-Lifshitz gravity in the presence of a scalar field. When the detailed balance condition is implemented, a new term in the gravitational sector is added in order to maintain ultraviolet stability. The four-dimensional theory is of a scalar-tensor type with a positive cosmological constant and gravity is nonminimally coupled with the scalar and its gradient terms. The scalar field has a double-well potential and, if required to play the role of the inflation, can produce a scale-invariant spectrum. The total action is rather complicated and there is no analog of the Einstein frame where Lorentz invariance is recovered in the infrared. For these reasons it may be necessary to abandon detailed balance. We comment on open problems and future directions in anisotropic critical models of gravity.Comment: 10 pages. v2: discussion expanded and improved, section on generalizations added, typos corrected, references added, conclusions unchange

    Classical and quantum ergodicity on orbifolds

    Full text link
    We extend to orbifolds classical results on quantum ergodicity due to Shnirelman, Colin de Verdi\`ere and Zelditch, proving that, for any positive, first-order self-adjoint elliptic pseudodifferential operator P on a compact orbifold X with positive principal symbol p, ergodicity of the Hamiltonian flow of p implies quantum ergodicity for the operator P. We also prove ergodicity of the geodesic flow on a compact Riemannian orbifold of negative sectional curvature.Comment: 14 page

    Essential self-adjointness of magnetic Schr\"odinger operators on locally finite graphs

    Full text link
    We give sufficient conditions for essential self-adjointness of magnetic Schr\"odinger operators on locally finite graphs. Two of the main theorems of the present paper generalize recent results of Torki-Hamza.Comment: 14 pages; The present version differs from the original version as follows: the ordering of presentation has been modified in several places, more details have been provided in several places, some notations have been changed, two examples have been added, and several new references have been inserted. The final version of this preprint will appear in Integral Equations and Operator Theor

    Comparative physical-tribological properties of anti-friction ion-plasma Ti-C-Mo-S coating on VT6 alloy or 20X13 and 40X steels

    Get PDF
    Results of comparative tests mechanical and tribological properties of solid antifriction Ti-C-Mo-S coating, deposited by magnetron-plasma combined sputtering method on substrates of VT6 titanium alloy, 40X and 20X13 hardened steels are provided. Coating is sputtered using the same conditions and technological regimes on substrates of different materials. However, the friction tests results showed significant difference in tribological characteristics of coating depending on type of material used for substrate, first of all by wear-resistance ability. Authors suppose that this is due to difference between physical properties such as composition and structure of substrate materials that determines hardness and coating adhesion to surface

    Band spectra of rectangular graph superlattices

    Full text link
    We consider rectangular graph superlattices of sides l1, l2 with the wavefunction coupling at the junctions either of the delta type, when they are continuous and the sum of their derivatives is proportional to the common value at the junction with a coupling constant alpha, or the "delta-prime-S" type with the roles of functions and derivatives reversed; the latter corresponds to the situations where the junctions are realized by complicated geometric scatterers. We show that the band spectra have a hidden fractal structure with respect to the ratio theta := l1/l2. If the latter is an irrational badly approximable by rationals, delta lattices have no gaps in the weak-coupling case. We show that there is a quantization for the asymptotic critical values of alpha at which new gap series open, and explain it in terms of number-theoretic properties of theta. We also show how the irregularity is manifested in terms of Fermi-surface dependence on energy, and possible localization properties under influence of an external electric field. KEYWORDS: Schroedinger operators, graphs, band spectra, fractals, quasiperiodic systems, number-theoretic properties, contact interactions, delta coupling, delta-prime coupling.Comment: 16 pages, LaTe

    A One-Parameter Family of Hamiltonian Structures for the KP Hierarchy and a Continuous Deformation of the Nonlinear \W_{\rm KP} Algebra

    Full text link
    The KP hierarchy is hamiltonian relative to a one-parameter family of Poisson structures obtained from a generalized Adler map in the space of formal pseudodifferential symbols with noninteger powers. The resulting \W-algebra is a one-parameter deformation of \W_{\rm KP} admitting a central extension for generic values of the parameter, reducing naturally to \W_n for special values of the parameter, and contracting to the centrally extended \W_{1+\infty}, \W_\infty and further truncations. In the classical limit, all algebras in the one-parameter family are equivalent and isomorphic to \w_{\rm KP}. The reduction induced by setting the spin-one field to zero yields a one-parameter deformation of \widehat{\W}_\infty which contracts to a new nonlinear algebra of the \W_\infty-type.Comment: 31 pages, compressed uuencoded .dvi file, BONN-HE-92/20, US-FT-7/92, KUL-TF-92/20. [version just replaced was truncated by some mailer

    Semiclassical measures and the Schroedinger flow on Riemannian manifolds

    Full text link
    In this article we study limits of Wigner distributions (the so-called semiclassical measures) corresponding to sequences of solutions to the semiclassical Schroedinger equation at times scales αh\alpha_{h} tending to infinity as the semiclassical parameter hh tends to zero (when αh=1/h\alpha _{h}=1/h this is equivalent to consider solutions to the non-semiclassical Schreodinger equation). Some general results are presented, among which a weak version of Egorov's theorem that holds in this setting. A complete characterization is given for the Euclidean space and Zoll manifolds (that is, manifolds with periodic geodesic flow) via averaging formulae relating the semiclassical measures corresponding to the evolution to those of the initial states. The case of the flat torus is also addressed; it is shown that non-classical behavior may occur when energy concentrates on resonant frequencies. Moreover, we present an example showing that the semiclassical measures associated to a sequence of states no longer determines those of their evolutions. Finally, some results concerning the equation with a potential are presented.Comment: 18 pages; Theorems 1,2 extendend to deal with arbitrary time-scales; references adde
    corecore