1,253 research outputs found
A comparison of two closely-related approaches to aerodynamic design optimization
Two related methods for aerodynamic design optimization are compared. The methods, called the implicit gradient approach and the variational (or optimal control) approach, both attempt to obtain gradients necessary for numerical optimization at a cost significantly less than that of the usual black-box approach that employs finite difference gradients. While the two methods are seemingly quite different, they are shown to differ (essentially) in that the order of discretizing the continuous problem, and of applying calculus, is interchanged. Under certain circumstances, the two methods turn out to be identical. We explore the relationship between these methods by applying them to a model problem for duct flow that has many features in common with transonic flow over an airfoil. We find that the gradients computed by the variational method can sometimes be sufficiently inaccurate to cause the optimization to fail
Lifshitz fermionic theories with z=2 anisotropic scaling
We construct fermionic Lagrangians with anisotropic scaling z=2, the natural
counterpart of the usual z=2 Lifshitz field theories for scalar fields. We
analyze the issue of chiral symmetry, construct the Noether axial currents and
discuss the chiral anomaly giving explicit results for two-dimensional case. We
also exploit the connection between detailed balance and the dynamics of
Lifshitz theories to find different z=2 fermionic Lagrangians and construct
their supersymmetric extensions.Comment: Typos corrected, comment adde
On Eigenvalue spacings for the 1-D Anderson model with singular site distribution
We study eigenvalue spacings and local eigenvalue statistics for 1D lattice
Schrodinger operators with Holder regular potential, obtaining a version of
Minami's inequality and Poisson statistics for the local eigenvalue spacings.
The main additional new input are regular properties of the Furstenberg
measures and the density of states obtained in some of the author's earlier
work.Comment: 13 page
Taking Stock of Common Core Math Implementation: Supporting Teachers to Shift Instruction: Insights from the Math in Common 2015 Baseline Survey of Teachers and Administrators
In spring 2015, WestEd administered surveys to understand the perspectives on Common Core State Standards-Mathematics (CCSS-M) implementation of teachers and administrators in eight California school districts participating in the Math in Common (MiC) initiative. From this survey effort, we were able to learn from over 1,000 respondents about some of the initial successes and challenges facing California educators attempting to put in place and support new -- and what some consider revolutionary -- ideas in U.S. mathematics education
Linear instability criteria for ideal fluid flows subject to two subclasses of perturbations
In this paper we examine the linear stability of equilibrium solutions to
incompressible Euler's equation in 2- and 3-dimensions. The space of
perturbations is split into two classes - those that preserve the topology of
vortex lines and those in the corresponding factor space. This classification
of perturbations arises naturally from the geometric structure of
hydrodynamics; our first class of perturbations is the tangent space to the
co-adjoint orbit. Instability criteria for equilibrium solutions are
established in the form of lower bounds for the essential spectral radius of
the linear evolution operator restricted to each class of perturbation.Comment: 29 page
Can one see the fundamental frequency of a drum?
We establish two-sided estimates for the fundamental frequency (the lowest
eigenvalue) of the Laplacian in an open subset G of R^n with the Dirichlet
boundary condition. This is done in terms of the interior capacitary radius of
G which is defined as the maximal possible radius of a ball B which has a
negligible intersection with the complement of G. Here negligibility of a
subset F in B means that the Wiener capacity of F does not exceed gamma times
the capacity of B, where gamma is an arbitrarily fixed constant between 0 and
1. We provide explicit values of constants in the two-sided estimates.Comment: 18 pages, some misprints correcte
On the Fredholm property of bisingular pseudodifferential operators
For operators belonging either to a class of global bisingular
pseudodifferential operators on or to a class of bisingular
pseudodifferential operators on a product of two closed smooth
manifolds, we show the equivalence of their ellipticity (defined by the
invertibility of certain associated homogeneous principal symbols) and their
Fredholm mapping property in associated scales of Sobolev spaces. We also prove
the spectral invariance of these operator classes and then extend these results
to the even larger classes of Toeplitz type operators.Comment: 21 pages. Expanded sections 3 and 4. Corrected typos. Added
reference
On Inverse Scattering at a Fixed Energy for Potentials with a Regular Behaviour at Infinity
We study the inverse scattering problem for electric potentials and magnetic
fields in \ere^d, d\geq 3, that are asymptotic sums of homogeneous terms at
infinity. The main result is that all these terms can be uniquely reconstructed
from the singularities in the forward direction of the scattering amplitude at
some positive energy.Comment: This is a slightly edited version of the previous pape
Conormal distributions in the Shubin calculus of pseudodifferential operators
We characterize the Schwartz kernels of pseudodifferential operators of
Shubin type by means of an FBI transform. Based on this we introduce as a
generalization a new class of tempered distributions called Shubin conormal
distributions. We study their transformation behavior, normal forms and
microlocal properties.Comment: 23 page
Analytic and Reidemeister torsion for representations in finite type Hilbert modules
For a closed Riemannian manifold we extend the definition of analytic and
Reidemeister torsion associated to an orthogonal representation of fundamental
group on a Hilbert module of finite type over a finite von Neumann algebra. If
the representation is of determinant class we prove, generalizing the
Cheeger-M\"uller theorem, that the analytic and Reidemeister torsion are equal.
In particular, this proves the conjecture that for closed Riemannian manifolds
with positive Novikov-Shubin invariants, the L2 analytic and Reidemeister
torsions are equal.Comment: 78 pages, AMSTe
- …
