1,253 research outputs found

    A comparison of two closely-related approaches to aerodynamic design optimization

    Get PDF
    Two related methods for aerodynamic design optimization are compared. The methods, called the implicit gradient approach and the variational (or optimal control) approach, both attempt to obtain gradients necessary for numerical optimization at a cost significantly less than that of the usual black-box approach that employs finite difference gradients. While the two methods are seemingly quite different, they are shown to differ (essentially) in that the order of discretizing the continuous problem, and of applying calculus, is interchanged. Under certain circumstances, the two methods turn out to be identical. We explore the relationship between these methods by applying them to a model problem for duct flow that has many features in common with transonic flow over an airfoil. We find that the gradients computed by the variational method can sometimes be sufficiently inaccurate to cause the optimization to fail

    Lifshitz fermionic theories with z=2 anisotropic scaling

    Full text link
    We construct fermionic Lagrangians with anisotropic scaling z=2, the natural counterpart of the usual z=2 Lifshitz field theories for scalar fields. We analyze the issue of chiral symmetry, construct the Noether axial currents and discuss the chiral anomaly giving explicit results for two-dimensional case. We also exploit the connection between detailed balance and the dynamics of Lifshitz theories to find different z=2 fermionic Lagrangians and construct their supersymmetric extensions.Comment: Typos corrected, comment adde

    On Eigenvalue spacings for the 1-D Anderson model with singular site distribution

    Full text link
    We study eigenvalue spacings and local eigenvalue statistics for 1D lattice Schrodinger operators with Holder regular potential, obtaining a version of Minami's inequality and Poisson statistics for the local eigenvalue spacings. The main additional new input are regular properties of the Furstenberg measures and the density of states obtained in some of the author's earlier work.Comment: 13 page

    Taking Stock of Common Core Math Implementation: Supporting Teachers to Shift Instruction: Insights from the Math in Common 2015 Baseline Survey of Teachers and Administrators

    Get PDF
    In spring 2015, WestEd administered surveys to understand the perspectives on Common Core State Standards-Mathematics (CCSS-M) implementation of teachers and administrators in eight California school districts participating in the Math in Common (MiC) initiative. From this survey effort, we were able to learn from over 1,000 respondents about some of the initial successes and challenges facing California educators attempting to put in place and support new -- and what some consider revolutionary -- ideas in U.S. mathematics education

    Linear instability criteria for ideal fluid flows subject to two subclasses of perturbations

    Full text link
    In this paper we examine the linear stability of equilibrium solutions to incompressible Euler's equation in 2- and 3-dimensions. The space of perturbations is split into two classes - those that preserve the topology of vortex lines and those in the corresponding factor space. This classification of perturbations arises naturally from the geometric structure of hydrodynamics; our first class of perturbations is the tangent space to the co-adjoint orbit. Instability criteria for equilibrium solutions are established in the form of lower bounds for the essential spectral radius of the linear evolution operator restricted to each class of perturbation.Comment: 29 page

    Can one see the fundamental frequency of a drum?

    Full text link
    We establish two-sided estimates for the fundamental frequency (the lowest eigenvalue) of the Laplacian in an open subset G of R^n with the Dirichlet boundary condition. This is done in terms of the interior capacitary radius of G which is defined as the maximal possible radius of a ball B which has a negligible intersection with the complement of G. Here negligibility of a subset F in B means that the Wiener capacity of F does not exceed gamma times the capacity of B, where gamma is an arbitrarily fixed constant between 0 and 1. We provide explicit values of constants in the two-sided estimates.Comment: 18 pages, some misprints correcte

    On the Fredholm property of bisingular pseudodifferential operators

    Full text link
    For operators belonging either to a class of global bisingular pseudodifferential operators on Rm×RnR^m \times R^n or to a class of bisingular pseudodifferential operators on a product M×NM \times N of two closed smooth manifolds, we show the equivalence of their ellipticity (defined by the invertibility of certain associated homogeneous principal symbols) and their Fredholm mapping property in associated scales of Sobolev spaces. We also prove the spectral invariance of these operator classes and then extend these results to the even larger classes of Toeplitz type operators.Comment: 21 pages. Expanded sections 3 and 4. Corrected typos. Added reference

    On Inverse Scattering at a Fixed Energy for Potentials with a Regular Behaviour at Infinity

    Full text link
    We study the inverse scattering problem for electric potentials and magnetic fields in \ere^d, d\geq 3, that are asymptotic sums of homogeneous terms at infinity. The main result is that all these terms can be uniquely reconstructed from the singularities in the forward direction of the scattering amplitude at some positive energy.Comment: This is a slightly edited version of the previous pape

    Conormal distributions in the Shubin calculus of pseudodifferential operators

    Get PDF
    We characterize the Schwartz kernels of pseudodifferential operators of Shubin type by means of an FBI transform. Based on this we introduce as a generalization a new class of tempered distributions called Shubin conormal distributions. We study their transformation behavior, normal forms and microlocal properties.Comment: 23 page

    Analytic and Reidemeister torsion for representations in finite type Hilbert modules

    Full text link
    For a closed Riemannian manifold we extend the definition of analytic and Reidemeister torsion associated to an orthogonal representation of fundamental group on a Hilbert module of finite type over a finite von Neumann algebra. If the representation is of determinant class we prove, generalizing the Cheeger-M\"uller theorem, that the analytic and Reidemeister torsion are equal. In particular, this proves the conjecture that for closed Riemannian manifolds with positive Novikov-Shubin invariants, the L2 analytic and Reidemeister torsions are equal.Comment: 78 pages, AMSTe
    corecore