308 research outputs found
Complex paths for regular-to-chaotic tunneling rates
In generic Hamiltonian systems tori of regular motion are dynamically
separated from regions of chaotic motion in phase space. Quantum mechanically
these phase-space regions are coupled by dynamical tunneling. We introduce a
semiclassical approach based on complex paths for the prediction of dynamical
tunneling rates from regular tori to the chaotic region. This approach is
demonstrated for the standard map giving excellent agreement with numerically
determined tunneling rates.Comment: 5 pages, 4 figure
Tunneling Mechanism due to Chaos in a Complex Phase Space
We have revealed that the barrier-tunneling process in non-integrable systems
is strongly linked to chaos in complex phase space by investigating a simple
scattering map model. The semiclassical wavefunction reproduces complicated
features of tunneling perfectly and it enables us to solve all the reasons why
those features appear in spite of absence of chaos on the real plane.
Multi-generation structure of manifolds, which is the manifestation of
complex-domain homoclinic entanglement created by complexified classical
dynamics, allows a symbolic coding and it is used as a guiding principle to
extract dominant complex trajectories from all the semiclassical candidates.Comment: 4 pages, RevTeX, 6 figures, to appear in Phys. Rev.
Meeting time distributions in Bernoulli systems
Meeting time is defined as the time for which two orbits approach each other
within distance in phase space. We show that the distribution of the
meeting time is exponential in -Bernoulli systems. In the limit
of , the distribution converges to exp(-\alpha\tau), where
is the meeting time normalized by the average. The exponent is shown to be
for the Bernoulli systems.Comment: 14 pages, 5 figure
Semiclassical Study on Tunneling Processes via Complex-Domain Chaos
We investigate the semiclassical mechanism of tunneling process in
non-integrable systems. The significant role of complex-phase-space chaos in
the description of the tunneling process is elucidated by studying a simple
scattering map model. Behaviors of tunneling orbits are encoded into symbolic
sequences based on the structure of complex homoclinic tanglement. By means of
the symbolic coding, the phase space itineraries of tunneling orbits are
related with the amounts of imaginary parts of actions gained by the orbits, so
that the systematic search of significant tunneling orbits becomes possible.Comment: 26 pages, 28 figures, submitted to Physical Review
Recovery of chaotic tunneling due to destruction of dynamical localization by external noise
Quantum tunneling in the presence of chaos is analyzed, focusing especially
on the interplay between quantum tunneling and dynamical localization. We
observed flooding of potentially existing tunneling amplitude by adding noise
to the chaotic sea to attenuate the destructive interference generating
dynamical localization. This phenomenon is related to the nature of complex
orbits describing tunneling between torus and chaotic regions. The tunneling
rate is found to obey a perturbative scaling with noise intensity when the
noise intensity is sufficiently small and then saturate in a large noise
intensity regime. A relation between the tunneling rate and the localization
length of the chaotic states is also demonstrated. It is shown that due to the
competition between dynamical tunneling and dynamical localization, the
tunneling rate is not a monotonically increasing function of Planck's constant.
The above results are obtained for a system with a sharp border between torus
and chaotic regions. The validity of the results for a system with a smoothed
border is also explained.Comment: 14 pages, 15 figure
Quantum Dynamics of Atom-molecule BECs in a Double-Well Potential
We investigate the dynamics of two-component Bose-Josephson junction composed
of atom-molecule BECs. Within the semiclassical approximation, the multi-degree
of freedom of this system permits chaotic dynamics, which does not occur in
single-component Bose-Josephson junctions. By investigating the level
statistics of the energy spectra using the exact diagonalization method, we
evaluate whether the dynamics of the system is periodic or non-periodic within
the semiclassical approximation. Additionally, we compare the semiclassical and
full-quantum dynamics.Comment: to appear in JLTP - QFS 200
Virtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations
For a higher order linear ordinary differential operator P, its Stokes curve
bifurcates in general when it hits another turning point of P. This phenomenon
is most neatly understandable by taking into account Stokes curves emanating
from virtual turning points, together with those from ordinary turning points.
This understanding of the bifurcation of a Stokes curve plays an important role
in resolving a paradox recently found in the Noumi-Yamada system, a system of
linear differential equations associated with the fourth Painleve equation.Comment: 7 pages, 4 figure
Nambu-Hamiltonian flows associated with discrete maps
For a differentiable map that has
an inverse, we show that there exists a Nambu-Hamiltonian flow in which one of
the initial value, say , of the map plays the role of time variable while
the others remain fixed. We present various examples which exhibit the map-flow
correspondence.Comment: 19 page
Spectral properties of quantized barrier billiards
The properties of energy levels in a family of classically pseudointegrable
systems, the barrier billiards, are investigated. An extensive numerical study
of nearest-neighbor spacing distributions, next-to-nearest spacing
distributions, number variances, spectral form factors, and the level dynamics
is carried out. For a special member of the billiard family, the form factor is
calculated analytically for small arguments in the diagonal approximation. All
results together are consistent with the so-called semi-Poisson statistics.Comment: 8 pages, 9 figure
Semiclassical transmission across transition states
It is shown that the probability of quantum-mechanical transmission across a
phase space bottleneck can be compactly approximated using an operator derived
from a complex Poincar\'e return map. This result uniformly incorporates
tunnelling effects with classically-allowed transmission and generalises a
result previously derived for a classically small region of phase space.Comment: To appear in Nonlinearit
- …
