308 research outputs found

    Complex paths for regular-to-chaotic tunneling rates

    Full text link
    In generic Hamiltonian systems tori of regular motion are dynamically separated from regions of chaotic motion in phase space. Quantum mechanically these phase-space regions are coupled by dynamical tunneling. We introduce a semiclassical approach based on complex paths for the prediction of dynamical tunneling rates from regular tori to the chaotic region. This approach is demonstrated for the standard map giving excellent agreement with numerically determined tunneling rates.Comment: 5 pages, 4 figure

    Tunneling Mechanism due to Chaos in a Complex Phase Space

    Get PDF
    We have revealed that the barrier-tunneling process in non-integrable systems is strongly linked to chaos in complex phase space by investigating a simple scattering map model. The semiclassical wavefunction reproduces complicated features of tunneling perfectly and it enables us to solve all the reasons why those features appear in spite of absence of chaos on the real plane. Multi-generation structure of manifolds, which is the manifestation of complex-domain homoclinic entanglement created by complexified classical dynamics, allows a symbolic coding and it is used as a guiding principle to extract dominant complex trajectories from all the semiclassical candidates.Comment: 4 pages, RevTeX, 6 figures, to appear in Phys. Rev.

    Meeting time distributions in Bernoulli systems

    Full text link
    Meeting time is defined as the time for which two orbits approach each other within distance ϵ\epsilon in phase space. We show that the distribution of the meeting time is exponential in (p1,...,pk)(p_1,...,p_k)-Bernoulli systems. In the limit of ϵ0\epsilon\to0, the distribution converges to exp(-\alpha\tau), where τ\tau is the meeting time normalized by the average. The exponent is shown to be α=l=1kpl(1pl)\alpha=\sum_{l=1}^{k}p_l(1-p_l) for the Bernoulli systems.Comment: 14 pages, 5 figure

    Semiclassical Study on Tunneling Processes via Complex-Domain Chaos

    Get PDF
    We investigate the semiclassical mechanism of tunneling process in non-integrable systems. The significant role of complex-phase-space chaos in the description of the tunneling process is elucidated by studying a simple scattering map model. Behaviors of tunneling orbits are encoded into symbolic sequences based on the structure of complex homoclinic tanglement. By means of the symbolic coding, the phase space itineraries of tunneling orbits are related with the amounts of imaginary parts of actions gained by the orbits, so that the systematic search of significant tunneling orbits becomes possible.Comment: 26 pages, 28 figures, submitted to Physical Review

    Recovery of chaotic tunneling due to destruction of dynamical localization by external noise

    Full text link
    Quantum tunneling in the presence of chaos is analyzed, focusing especially on the interplay between quantum tunneling and dynamical localization. We observed flooding of potentially existing tunneling amplitude by adding noise to the chaotic sea to attenuate the destructive interference generating dynamical localization. This phenomenon is related to the nature of complex orbits describing tunneling between torus and chaotic regions. The tunneling rate is found to obey a perturbative scaling with noise intensity when the noise intensity is sufficiently small and then saturate in a large noise intensity regime. A relation between the tunneling rate and the localization length of the chaotic states is also demonstrated. It is shown that due to the competition between dynamical tunneling and dynamical localization, the tunneling rate is not a monotonically increasing function of Planck's constant. The above results are obtained for a system with a sharp border between torus and chaotic regions. The validity of the results for a system with a smoothed border is also explained.Comment: 14 pages, 15 figure

    Quantum Dynamics of Atom-molecule BECs in a Double-Well Potential

    Full text link
    We investigate the dynamics of two-component Bose-Josephson junction composed of atom-molecule BECs. Within the semiclassical approximation, the multi-degree of freedom of this system permits chaotic dynamics, which does not occur in single-component Bose-Josephson junctions. By investigating the level statistics of the energy spectra using the exact diagonalization method, we evaluate whether the dynamics of the system is periodic or non-periodic within the semiclassical approximation. Additionally, we compare the semiclassical and full-quantum dynamics.Comment: to appear in JLTP - QFS 200

    Virtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations

    Full text link
    For a higher order linear ordinary differential operator P, its Stokes curve bifurcates in general when it hits another turning point of P. This phenomenon is most neatly understandable by taking into account Stokes curves emanating from virtual turning points, together with those from ordinary turning points. This understanding of the bifurcation of a Stokes curve plays an important role in resolving a paradox recently found in the Noumi-Yamada system, a system of linear differential equations associated with the fourth Painleve equation.Comment: 7 pages, 4 figure

    Nambu-Hamiltonian flows associated with discrete maps

    Full text link
    For a differentiable map (x1,x2,...,xn)(X1,X2,...,Xn)(x_1,x_2,..., x_n)\to (X_1,X_2,..., X_n) that has an inverse, we show that there exists a Nambu-Hamiltonian flow in which one of the initial value, say xnx_n, of the map plays the role of time variable while the others remain fixed. We present various examples which exhibit the map-flow correspondence.Comment: 19 page

    Spectral properties of quantized barrier billiards

    Full text link
    The properties of energy levels in a family of classically pseudointegrable systems, the barrier billiards, are investigated. An extensive numerical study of nearest-neighbor spacing distributions, next-to-nearest spacing distributions, number variances, spectral form factors, and the level dynamics is carried out. For a special member of the billiard family, the form factor is calculated analytically for small arguments in the diagonal approximation. All results together are consistent with the so-called semi-Poisson statistics.Comment: 8 pages, 9 figure

    Semiclassical transmission across transition states

    Full text link
    It is shown that the probability of quantum-mechanical transmission across a phase space bottleneck can be compactly approximated using an operator derived from a complex Poincar\'e return map. This result uniformly incorporates tunnelling effects with classically-allowed transmission and generalises a result previously derived for a classically small region of phase space.Comment: To appear in Nonlinearit
    corecore