90 research outputs found
Clock controls timing of mouse pancreatic differentiation through regulation of Wnt- and Notch-based and cell division components
The oscillations of circadian genes control the daily circadian clock, regulating a diverse array of physiologies with the 24-hour light/dark cue across a wide variety of organisms. Here we first show that before embryonic circadian rhythms occur, the oscillation (nucleocytoplasmic shuttling) of core circadian gene Clock is tissue-specific and correlated with the state of differentiation during both early development and later pancreas organogenesis. Disruption of Clock as well as Timeless in the embryonic pancreas does not block pancreatic differentiation but alters the balance and maturity of endocrine and exocrine cells. Molecular analysis indicates that inhibition of Clock or Timeless expression disturbs not only cell cycle regulators, but also Wnt- and Notch-signaling components, whose oscillations establish the timing mechanism in somitogenesis. Thus, our results provide new insights about circadian genes' function in control of the timing of differentiation during embryonic development. (c) 2007 Elsevier Inc. All rights reserved
cAMP/CREB-regulated LINC00473 marks LKB1-inactivated lung cancer and mediates tumor growth
The LKB1 tumor suppressor gene is frequently mutated and inactivated in non–small cell lung cancer (NSCLC). Loss of LKB1 promotes cancer progression and influences therapeutic responses in preclinical studies; however, specific targeted therapies for lung cancer with LKB1 inactivation are currently unavailable. Here, we have identified a long noncoding RNA (lncRNA) signature that is associated with the loss of LKB1 function. We discovered that LINC00473 is consistently the most highly induced gene in LKB1-inactivated human primary NSCLC samples and derived cell lines. Elevated LINC00473 expression correlated with poor prognosis, and sustained LINC00473 expression was required for the growth and survival of LKB1-inactivated NSCLC cells. Mechanistically, LINC00473 was induced by LKB1 inactivation and subsequent cyclic AMP–responsive element–binding protein (CREB)/CREB-regulated transcription coactivator (CRTC) activation. We determined that LINC00473 is a nuclear lncRNA and interacts with NONO, a component of the cAMP signaling pathway, thereby facilitating CRTC/CREB-mediated transcription. Collectively, our study demonstrates that LINC00473 expression potentially serves as a robust biomarker for tumor LKB1 functional status that can be integrated into clinical trials for patient selection and treatment evaluation, and implicates LINC00473 as a therapeutic target for LKB1-inactivated NSCLC
mRNA alternative polyadenylation (APA) in regulation of gene expression and diseases
The mRNA polyadenylation plays essential function in regulation of mRNA metabolism. Mis-regulations of mRNA polyadenylation are frequently linked with aberrant gene expression and disease progression. Under the action of polyadenylate polymerase, poly(A) tail is synthesized after the polyadenylation signal (PAS) sites on the mRNAs. Alternative polyadenylation (APA) often occurs in mRNAs with multiple poly(A) sites, producing different 3′ ends for transcript variants, and therefore plays important functions in gene expression regulation. In this review, we first summarize the classical process of mRNA 3′-terminal formation and discuss the length control mechanisms of poly(A) in nucleus and cytoplasm. Then we review the research progress on alternative polyadenylation regulation and the APA site selection mechanism. Finally, we summarize the functional roles of APA in the regulation of gene expression and diseases including cancers
N6-methyladenosine (m6A) RNA modification in tumor immunity
Growing evidence supports that cancer progression is closely associated with the tumor microenvironment and immune evasion. Importantly, recent studies have revealed the crucial roles of epigenetic regulators in shaping the tumor microenvironment and restoring immune recognition. N6-methyladenosine (m6A) modification, the most prevalent epigenetic modification of mammalian mRNAs, has essential functions in regulating the processing and metabolism of its targeted RNAs, and therefore affects various biological processes including tumorigenesis and progression. Recent studies have demonstrated the critical functions and molecular mechanisms underlying abnormal m6A modification in the regulation of tumor immunity. In this review, we summarize recent research progress in the potential roles of m6A modification in tumor immunoregulation, with a special focus on the anti-tumor processes of immune cells and involvement in immune-associated molecules and pathways. Furthermore, we review current knowledge regarding the close correlation between m6A-related risk signatures and the tumor immune microenvironment landscape, and we discuss the prognostic value and therapeutic efficacy of m6A regulators in a variety of cancer types.</jats:p
N<sup>7</sup>-methylguanosine (m<sup>7</sup>G) tRNA modification: a novel autophagy modulator in cancer
N6-methyladenosine (m6A) modification of ribosomal RNAs (rRNAs): Critical roles in mRNA translation and diseases
As key components of the ribosome and the most abundant RNA species, the rRNAs are modified during ribosome formation. N6-methyladenosine (m6A) is a conserved RNA modification occurring on different RNA species including rRNAs. Recently, it has been reported that ZCCHC4 and METTL5 are methyltransferases that mediate m6A modification of human 28S and 18S rRNA, respectively. The newly discovered biological functions of the two methyltransferases include regulation of mRNA translation, cell proliferation, cell differentiation, stress response, and other biological processes. Both of them, especially METTL5, have been proved to be associated with a variety of diseases such as intellectual disability, cancer, congenital dysplasia and have potential clinical application as biomarkers and therapeutic targets
N6-methyladenosine (m6A) modification of ribosomal RNAs (rRNAs): Critical roles in mRNA translation and diseases
- …
