194 research outputs found

    Macrophyte identity shapes water column and sediment bacterial community

    Get PDF
    By assembling mesocosms and utilizing high-throughput sequencing, we aim to characterize the shifts of the bacterial community in freshwaters driven by two contrasting submerged macrophyte species, Ceratophyllum demersum L. and Vallisneria spiralis L. Although the microbe in both the water column and sediment were largely modulated by the macrophyte, the effect varied considerably depending on bacterial locations and macrophyte species. Actinobacteria was the most abundant taxa in the water column of all the three treatments, but its abundances were significantly higher in the two planted treatments. Moreover, Alphaproteobacteria showed high abundance only in the unplanted control. For bacterial taxa in the sediment, C. demersum significantly increased the relative abundance of Anaerolineae but reduced the relative abundance of Betaproteobacteria and Gammaproteobacteria, while V. spiralis increased the relative abundance of Deltaproteobacteria and Gammaproteobacteria. Additionally, in the C. demersum treatment, the water column bacterial community increased more dramatically in richness, alpha diversity, and the relative abundance of the dominant taxa than those in the V. spiralis treatment. Taken together, the findings from this study reveal that the two species of submerged macrophyte modified the bacterial community in waters, despite the obvious interspecific performance differences

    Water quality prediction based on multi-task learning

    Get PDF
    Water pollution seriously endangers people’s lives and restricts the sustainable development of the economy. Water quality prediction is essential for early warning and prevention of water pollution. However, the nonlinear characteristics of water quality data make it challenging to accurately predicted by traditional methods. Recently, the methods based on deep learning can better deal with nonlinear characteristics, which improves the prediction performance. Still, they rarely consider the relationship between multiple prediction indicators of water quality. The relationship between multiple indicators is crucial for the prediction because they can provide more associated auxiliary information

    Research on straightness detection of steel strip edge based on machine vision

    No full text
    Abstract In order to accurately detect the straightness of steel strip edge, a method of minimum containment area evaluation of straightness based on visual measurement scanning discriminant search is proposed. Firstly, opencv is used to preprocess the collected steel strip image, then Canny edge extraction operator is used to extract the steel strip edge, and the steel strip image contour is extracted. Finally, the straightness evaluation method proposed in this paper is used to measure the steel strip straightness. Compared with the measurement results of the two end point connection method and the least square method, the measurement results of the proposed straightness evaluation method are closer to the manual test results, which is conducive to improving the accuracy of steel strip straightness detection.</jats:p

    General trends in freshwater ecological restoration practice in China over the past two decades: the driving factors and the evaluation of restoration outcome

    No full text
    Abstract Background Although freshwater ecological restoration (FER) has undergone an immense development in China either in the number of projects or in the spatial scale of implementations, a dearth of clear and comprehensive trends in this field is still a particular concern. We conducted a literature survey through searching the database of Web of Science between 1998-2017.Results A total of 2047 publications were hit and 198 of them were finally retained after manual screening. The number of studies in this field has been steadily increasing in recent years and their provincial distribution is positively correlated with GDP growth and the investment to pollution control and protection, suggesting that economic development is a key driving factor of FER practice. Among the remained articles, nearly half (46.5%) focus on lake ecosystems, and 34.8% and 32.8% of the studies believe that land reclamation and eutrophication are the top two causes of freshwater ecosystem degradation. The overarching target of the restoration is biodiversity increase (31.4%), followed by water quality improvement (24.7%) and ecosystem services (23.9%). Revegetation is the dominant restoration approach (40.9%). Reference sites for assessment of restoration projects are normally control areas or locations without intervention (60%), or the status of the targeted sites before the interventions. For the restoration outcome evaluation, 86% of the studies present positive outcomes in terms of water quality improvement, and 79% have improvement in biological features. The most frequently monitored organisms are macrophytes (31%), then followed by benthos as indicators of ecological condition.Conclusions The literature research indicated that economic growth, water pollution and investment into environmental protection are the main driving factors of FER practice in China. Additionally, the effort of restoration and evaluation over the past two decades has not been limited to improving hydrological function and water quality, but also pay increasingly more attention to biological processes and ecological integrity, and further the ecosystem services in recent years. However, the lack of long-term monitoring and socioeconomic attributes considered in restoration success assessments are still particular issues needed to be addressed in the future FER researches and projects.</jats:p

    General trends in freshwater ecological restoration practice in China over the past two decades: the driving factors and the evaluation of restoration outcome

    No full text
    Abstract Background Although freshwater ecological restoration (FER) has undergone an immense development over the past two decades in China either in the number of projects or in the spatial scale of implementations, a dearth of clear and comprehensive trends in this field is still a particular concern. We conducted a literature survey through searching the database of Web of Science between 1997 and 2017 to investigate the driving force behind FER practice and to summarize the restoration outcomes. Results A total of 2047 publications were hit and 198 of them were finally retained after manual screening. The number of studies in this field has been steadily increasing in recent years and their provincial distribution is positively correlated with GDP growth and the investment to pollution control and environmental protection, suggesting that economic development is a key driving factor of FER practice. Among the remaining articles, nearly half (46.5%) focus on lake ecosystems, and 34.8% and 32.8% of the studies indicate that land reclamation and eutrophication are the predominant causes of freshwater ecosystem degradation. The overarching target of the restoration is biodiversity increase (31.4%), followed by water quality improvement (24.7%) and ecosystem services (23.9%). Revegetation is a dominant restoration approach (40.9%). Reference sites for assessment of restoration projects are normally control locations without intervention (60%), or the status of the targeted sites before the interventions. For the restoration outcome evaluation, 86% of the studies present positive outcomes in terms of water quality improvement, and 79% have improvement in biological features. The most frequently monitored organisms are macrophytes (31%), followed by benthos as indicators of ecological condition. Conclusions Economic growth, water pollution and investment into environmental protection are the main driving factors of FER practice in China. The effort of restoration and evaluation over the past two decades has not been limited to improving hydrological function and water quality, but also pay increasingly more attention to biological processes and ecological integrity, and further the ecosystem services in recent years. However, the lack of long-term monitoring and socioeconomic attributes considered in restoration success assessments are still particular issues that need to be addressed in the future FER researches and projects. </jats:sec

    General trends in freshwater ecological restoration practice in China over the past two decades: the driving factors and the evaluation of restoration outcome

    No full text
    Background Although freshwater ecological restoration (FER) has undergone an immense development over the past two decades in China either in the number of projects or in the spatial scale of implementations, a dearth of clear and comprehensive trends in this field is still a particular concern. We conducted a literature survey through searching the database of Web of Science between 1997 and 2017 to investigate the driving force behind FER practice and to summarize the restoration outcomes. Results A total of 2047 publications were hit and 198 of them were finally retained after manual screening. The number of studies in this field has been steadily increasing in recent years and their provincial distribution is positively correlated with GDP growth and the investment to pollution control and environmental protection, suggesting that economic development is a key driving factor of FER practice. Among the remaining articles, nearly half (46.5%) focus on lake ecosystems, and 34.8% and 32.8% of the studies indicate that land reclamation and eutrophication are the predominant causes of freshwater ecosystem degradation. The overarching target of the restoration is biodiversity increase (31.4%), followed by water quality improvement (24.7%) and ecosystem services (23.9%). Revegetation is a dominant restoration approach (40.9%). Reference sites for assessment of restoration projects are normally control locations without intervention (60%), or the status of the targeted sites before the interventions. For the restoration outcome evaluation, 86% of the studies present positive outcomes in terms of water quality improvement, and 79% have improvement in biological features. The most frequently monitored organisms are macrophytes (31%), followed by benthos as indicators of ecological condition. Conclusions Economic growth, water pollution and investment into environmental protection are the main driving factors of FER practice in China. The effort of restoration and evaluation over the past two decades has not been limited to improving hydrological function and water quality, but also pay increasingly more attention to biological processes and ecological integrity, and further the ecosystem services in recent years. However, the lack of long-term monitoring and socioeconomic attributes considered in restoration success assessments are still particular issues that need to be addressed in the future FER researches and projects
    corecore