1,433 research outputs found
Autonomous navigation with constrained consistency for C-Ranger
Autonomous underwater vehicles (AUVs) have become the most widely used tools for undertaking complex exploration tasks in marine environments. Their synthetic ability to carry out localization autonomously and build an environmental map concurrently, in other words, simultaneous localization and mapping (SLAM), are considered to be pivotal requirements for AUVs to have truly autonomous navigation. However, the consistency problem of the SLAM system has been greatly ignored during the past decades. In this paper, a consistency constrained extended Kalman filter (EKF) SLAM algorithm, applying the idea of local consistency, is proposed and applied to the autonomous navigation of the C-Ranger AUV, which is developed as our experimental platform. The concept of local consistency (LC) is introduced after an explicit theoretical derivation of the EKF-SLAM system. Then, we present a locally consistency-constrained EKF-SLAM design, LC-EKF, in which the landmark estimates used for linearization are fixed at the beginning of each local time period, rather than evaluated at the latest landmark estimates. Finally, our proposed LC-EKF algorithm is experimentally verified, both in simulations and sea trials. The experimental results show that the LC-EKF performs well with regard to consistency, accuracy and computational efficiency
Influences of composition of starting powders and sintering temperature on the pore size distribution of porous corundum-mullite ceramics
Porous corundum-mullite ceramics were prepared by an in-situ decomposition pore-forming technique. Starting powders were mixtures of milled Al(OH)3 and microsilica and were formed into oblong samples with a length of 100mm and a square cross-section with edge size of 20mm. The samples were heated at 1300°C, 1400°C, 1500°C or 1600°C for 3h in air atmosphere, respectively. Apparent porosity was detected by Archimedes’ Principle with water as a medium. Pore size distribution and the volume percentage of micropores were measured by mercury intrusion porosimetry. The results show that the pore morphology parameters in the samples depend on four factors: particle size distribution of starting powders, decomposition of Al(OH)3, the expansion caused by mullite and sintering. The optimum mode which has a higher apparent porosity up to 42.3%, well-distributed pores and more microsize pores up to 16.3% is sample No.3 and the most apposite sintering temperature of this sample is 1500°C
Quantum Interference of Stored Coherent Spin-wave Excitations in a Two-channel Memory
Quantum memories are essential elements in long-distance quantum networks and
quantum computation. Significant advances have been achieved in demonstrating
relative long-lived single-channel memory at single-photon level in cold atomic
media. However, the qubit memory corresponding to store two-channel spin-wave
excitations (SWEs) still faces challenges, including the limitations resulting
from Larmor procession, fluctuating ambient magnetic field, and
manipulation/measurement of the relative phase between the two channels. Here,
we demonstrate a two-channel memory scheme in an ideal tripod atomic system, in
which the total readout signal exhibits either constructive or destructive
interference when the two-channel SWEs are retrieved by two reading beams with
a controllable relative phase. Experimental result indicates quantum coherence
between the stored SWEs. Based on such phase-sensitive storage/retrieval
scheme, measurements of the relative phase between the two SWEs and Rabi
oscillation, as well as elimination of the collapse and revival of the readout
signal, are experimentally demonstrated
Coherent manipulation of spin wave vector for polarization of photons in an atomic ensemble
We experimentally demonstrate the manipulation of two-orthogonal components
of a spin wave in an atomic ensemble. Based on Raman two-photon transition and
Larmor spin precession induced by magnetic field pulses, the coherent rotations
between the two components of the spin wave is controllably achieved.
Successively, the two manipulated spin-wave components are mapped into two
orthogonal polarized optical emissions, respectively. By measuring Ramsey
fringes of the retrieved optical signals, the \pi/2-pulse fidelity of ~96% is
obtained. The presented manipulation scheme can be used to build an arbitrary
rotation for qubit operations in quantum information processing based on atomic
ensembles
- …
