1,767 research outputs found

    LOFAR early-time search for coherent radio emission from GRB 180706A

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.The nature of the central engines of gamma-ray bursts (GRBs) and the composition of their relativistic jets are still under debate. If the jets are Poynting flux dominated rather than baryon dominated, a coherent radio flare from magnetic re-connection events might be expected with the prompt gamma-ray emission. There are two competing models for the central engines of GRBs; a black hole or a newly formed milli-second magnetar. If the central engine is a magnetar it is predicted to produce coherent radio emission as persistent or flaring activity. In this paper, we present the deepest limits to date for this emission following LOFAR rapid response observations of GRB 180706A. No emission is detected to a 3σ\sigma limit of 1.7 mJy beam1^{-1} at 144 MHz in a two-hour LOFAR observation starting 4.5 minutes after the gamma-ray trigger. A forced source extraction at the position of GRB 180706A provides a marginally positive (1 sigma) peak flux density of 1.1±0.91.1 \pm 0.9 mJy. The data were time-sliced into different sets of snapshot durations to search for FRB like emission. No short duration emission was detected at the location of the GRB. We compare these results to theoretical models and discuss the implications of a non-detection.Peer reviewedFinal Accepted Versio

    LOFAR discovery of a 700-kpc remnant radio galaxy at low redshift

    Get PDF
    Remnant radio galaxies represent the final dying phase of radio galaxy evolution, in which the jets are no longer active. Due to their rarity in flux limited samples and the difficulty of identification, this dying phase remains poorly understood and the luminosity evolution largely unconstrained. Here we present the discovery and detailed analysis of a large (700 kpc) remnant radio galaxy with a low surface brightness that has been identified in LOFAR images at 150 MHz. By combining LOFAR data with new follow-up Westerbork observations and archival data at higher frequencies, we investigated the source morphology and spectral properties from 116 to 4850 MHz. By modelling the radio spectrum we probed characteristic timescales of the radio activity. The source has a relatively smooth, diffuse, amorphous appearance together with a very weak central compact core which is associated with the host galaxy located at z=0.051. From our ageing and morphological analysis it is clear that the nuclear engine is currently switched off or, at most, active at a very low power state. The host galaxy is currently interacting with another galaxy located at a projected separation of 15 kpc and a radial velocity offset of 300 km/s. This interaction may have played a role in the triggering and/or shut down of the radio jets. The spectral shape of this remnant radio galaxy differs from the majority of the previously identified remnant sources, which show steep or curved spectra at low to intermediate frequencies. In light of this finding and in preparation for new-generation deep low-frequency surveys, we discuss the selection criteria to be used to select representative samples of these sources.Comment: 10 pages, 6 figures, 5 tables, A&A accepte

    Search and modelling of remnant radio galaxies in the LOFAR Lockman Hole field

    Get PDF
    Accepted for publication in Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics, © 2017 ESO.The phase of radio galaxy evolution after the jets have switched off, often referred to as the remnant phase, is poorly understood and very few sources in this phase are known. In this work we present an extensive search for remnant radio galaxies in the Lockman Hole, a well-studied extragalactic field. We create mock catalogues of low-power radio galaxies based on Monte Carlo simulations to derive first-order predictions of the fraction of remnants in radio flux limited samples for comparison with our Lockman-Hole sample. We have combined LOFAR observations at 150 MHz with public surveys at higher frequencies to perform a complete selection and have used, for the first time, a combination of spectral criteria (e.g. the classical ultra-steep spectral index and high spectral curvature) as well as morphological criteria (e.g. low radio core prominence and relaxed shapes). Mock catalogues of radio galaxies are created based on existing spectral and dynamical evolution models combined with observed source properties. We have identified 23 candidate remnant radio galaxies which cover a variety of morphologies and spectral characteristics. We suggest that these different properties are related to different stages of the remnant evolution. We find that ultra-steep spectrum remnants represent only a fraction of our remnant sample suggesting a very rapid luminosity evolution of the radio plasma. Results from mock catalogues demonstrate the importance of dynamical evolution in the remnant phase of low-power radio galaxies to obtain fractions of remnant sources consistent with our observations. Moreover, these results confirm that ultra-steep spectrum remnants represent only a subset of the entire population (\sim50%) when frequencies higher than 1400 MHz are not included in the selection process, and that they are biased towards old ages.Peer reviewe

    LOFAR MSSS: Flattening low-frequency radio continuum spectra of nearby galaxies

    Get PDF
    Accepted for publication in Astronomy and AstrophysicsAims. The shape of low-frequency radio continuum spectra of normal galaxies is not well understood, the key question being the role of physical processes such as thermal absorption in shaping them. In this work we take advantage of the LOFAR Multifrequency Snapshot Sky Survey (MSSS) to investigate such spectra for a large sample of nearby star-forming galaxies. Methods. Using the measured 150 MHz flux densities from the LOFAR MSSS survey and literature flux densities at various frequencies we have obtained integrated radio spectra for 106 galaxies characterised by different morphology and star formation rate. The spectra are explained through the use of a three-dimensional model of galaxy radio emission, and radiation transfer dependent on the galaxy viewing angle and absorption processes. Results. Our galaxies' spectra are generally flatter at lower compared to higher frequencies: the median spectral index α low measured between ≈ 50 MHz and 1.5 GHz is -0.57 ± 0.01 while the high-frequency one α high, calculated between 1.3 GHz and 5 GHz, is -0.77 ± 0.03. As there is no tendency for the highly inclined galaxies to have more flattened low-frequency spectra, we argue that the observed flattening is not due to thermal absorption, contradicting the suggestion of Israel & Mahoney (1990, ApJ, 352, 30). According to our modelled radio maps for M 51-like galaxies, the free-free absorption effects can be seen only below 30 MHz and in the global spectra just below 20 MHz, while in the spectra of starburst galaxies, like M 82, the flattening due to absorption is instead visible up to higher frequencies of about 150 MHz. Starbursts are however scarce in the local Universe, in accordance with the weak spectral curvature seen in the galaxies of our sample. Locally, within galactic disks, the absorption effects are distinctly visible in M 51-like galaxies as spectral flattening around 100-200 MHz in the face-on objects, and as turnovers in the edge-on ones, while in M 82-like galaxies there are strong turnovers at frequencies above 700 MHz, regardless of viewing angle. Conclusions. Our modelling of galaxy spectra suggests that the weak spectral flattening observed in the nearby galaxies studied here results principally from synchrotron spectral curvature due to cosmic ray energy losses and propagation effects. We predict much stronger effects of thermal absorption in more distant galaxies with high star formation rates. Some influence exerted by the Milky Way's foreground on the spectra of all external galaxies is also expected at very low frequencies.Peer reviewedFinal Accepted Versio

    First LOFAR results on galaxy clusters

    Full text link
    Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. The role played by this non-thermal intracluster component on the thermodynamical evolution of galaxy clusters is debated, with important implications for cosmological and astrophysical studies of the largest gravitationally bound structures of the Universe. The low surface brightness and steep spectra of diffuse cluster radio sources make them more easily detectable at low-frequencies. LOFAR is the first instrument able to detect diffuse radio emission in hundreds of massive galaxy clusters up to their formation epoch. We present the first observations of clusters imaged by LOFAR and the huge perspectives opened by this instrument for non-thermal cluster studies.Comment: Proceedings of the 2012 week of the French Society of Astronomy and Astrophysics (SF2A) held in Nice, June 5th-8t

    Euclid preparation:XXX. Performance assessment of the NISP red grism through spectroscopic simulations for the wide and deep surveys

    Get PDF
    This work focusses on the pilot run of a simulation campaign aimed at investigating the spectroscopic capabilities of the Euclid Near-Infrared Spectrometer and Photometer (NISP), in terms of continuum and emission line detection in the context of galaxy evolutionary studies. To this purpose, we constructed, emulated, and analysed the spectra of 4992 star-forming galaxies at 0:3 ≥ z ≥ 2:5 using the NISP pixel-level simulator. We built the spectral library starting from public multi-wavelength galaxy catalogues, with value-added information on spectral energy distribution (SED) fitting results, and stellar population templates from Bruzual &amp; Charlot (2003, MNRAS, 344, 1000). Rest-frame optical and near-IR nebular emission lines were included using empirical and theoretical relations. Dust attenuation was treated using the Calzetti extinction law accounting for the differential attenuation in line-emitting regions with respect to the stellar continuum. The NISP simulator was configured including instrumental and astrophysical sources of noise such as the dark current, read-out noise, zodiacal background, and out-of-field stray light. In this preliminary study, we avoided contamination due to the overlap of the slitless spectra. For this purpose, we located the galaxies on a grid and simulated only the first order spectra.We inferred the 3.5δ NISP red grism spectroscopic detection limit of the continuum measured in the H band for star-forming galaxies with a median disk half-light radius of 0: 004 at magnitude H = 19:5 = 0:2ABmag for the Euclid Wide Survey and at H = 20:8 = 0:6ABmag for the Euclid Deep Survey. We found a very good agreement with the red grism emission line detection limit requirement for the Wide and Deep surveys. We characterised the effect of the galaxy shape on the detection capability of the red grism and highlighted the degradation of the quality of the extracted spectra as the disk size increased. In particular, we found that the extracted emission line signal-to-noise ratio (S/N) drops by 45% when the disk size ranges from 0: 0025 to 100. These trends lead to a correlation between the emission line S/N and the stellar mass of the galaxy and we demonstrate the effect in a stacking analysis unveiling emission lines otherwise too faint to detect.</p

    Lofar low-band antenna observations of the 3C 295 and boötes fields : Source counts and ultra-steep spectrum sources

    Get PDF
    © 2018 The American Astronomical Society. All rights reserved.We present Low Frequency Array (LOFAR) Low Band observations of the Boötes and 3C 295 fields. Our images made at 34, 46, and 62 MHz reach noise levels of 12, 8, and 5 mJy beam-1, making them the deepest images ever obtained in this frequency range. In total, we detect between 300 and 400 sources in each of these images, covering an area of 17-52 deg2. From the observations, we derive Euclidean-normalized differential source counts. The 62 MHz source counts agree with previous GMRT 153 MHz and Very Large Array 74 MHz differential source counts, scaling with a spectral index of -0.7. We find that a spectral index scaling of -0.5 is required to match up the LOFAR 34 MHz source counts. This result is also in agreement with source counts from the 38 MHz 8C survey, indicating that the average spectral index of radio sources flattens toward lower frequencies. We also find evidence for spectral flattening using the individual flux measurements of sources between 34 and 1400 MHz and by calculating the spectral index averaged over the source population. To select ultra-steep spectrum (α < -1.1) radio sources that could be associated with massive high-redshift radio galaxies, we compute spectral indices between 62 MHz, 153 MHz, and 1.4 GHz for sources in the Boötes field. We cross-correlate these radio sources with optical and infrared catalogs and fit the spectral energy distribution to obtain photometric redshifts. We find that most of these ultra-steep spectrum sources are located in the 0.7 ≲ z ≲ 2.5 range.Peer reviewe

    Remnant radio-loud AGN in the Herschel-ATLAS field

    Get PDF
    Only a small fraction of observed active galactic nuclei (AGN) display large-scale radio emission associated with jets, yet these radio-loud AGN have become increasingly important in models of galaxy evolution. In determining the dynamics and energetics of the radio sources over cosmic time, a key question concerns what happens when their jets switch off. The resulting ‘remnant' radio-loud AGN have been surprisingly evasive in past radio surveys, and therefore statistical information on the population of radio-loud AGN in their dying phase is limited. In this paper, with the recent developments of Low-Frequency Array (LOFAR) and the Very Large Array, we are able to provide a systematically selected sample of remnant radio-loud AGN in the Herschel-ATLAS field. Using a simple core-detection method, we constrain the upper limit on the fraction of remnants in our radio-loud AGN sample to 9 per cent, implying that the extended lobe emission fades rapidly once the core/jets turn off. We also find that our remnant sample has a wide range of spectral indices (−1.5 ⩽ α1400150 ⩽ −0.5), confirming that the lobes of some remnants may possess flat spectra at low frequencies just as active sources do. We suggest that, even with the unprecedented sensitivity of LOFAR, our sample may still only contain the youngest of the remnant population

    First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256

    Get PDF
    Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR Low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of -2.3 \pm 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of -0.81 \pm 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last \sim 0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region.Comment: 13 pages, 13 figures, accepted for publication in A\&A on April 12, 201

    <i>Euclid</i> preparation XXXVIII:Spectroscopy of active galactic nuclei with NISP

    Get PDF
    The statistical distribution and evolution of key properties of active galactic nuclei (AGN), such as their accretion rate, mass, and spin, remains a subject of open debate in astrophysics. The ESA Euclid space mission, launched on July 1 2023, promises a breakthrough in this field. We create detailed mock catalogues of AGN spectra from the rest-frame near-infrared down to the ultraviolet – including emission lines – to simulate what Euclid will observe for both obscured (type 2) and unobscured (type 1) AGN. We concentrate on the red grisms of the NISP instrument, which will be used for the wide-field survey, opening a new window for spectroscopic AGN studies in the near-infrared. We quantify the efficiency in the redshift determination as well as in retrieving the emission line flux of the Hα+[N II] complex, as Euclid is mainly focused on this emission line, given that it is expected to be the brightest one in the probed redshift range. Spectroscopic redshifts are measured for 83% of the simulated AGN in the interval where the Hα is visible (i.e. 0.89 &lt;  z &lt;  1.83 at a line flux of &gt; 2 × 10−16 erg s−1 cm−2, encompassing the peak of AGN activity at z ≃ 1 − 1.5) within the spectral coverage of the red grism. Outside this redshift range, the measurement efficiency decreases significantly. Overall, a spectroscopic redshift iscorrectly determined for about 90% of type 2 AGN down to an emission line flux of roughly 3 × 10−16 erg s−1 cm−2, and for type 1 AGN down to 8.5 × 10−16 erg s−1 cm−2. Recovered values for black hole mass show a small offset with respect to the input values by about 10%, but the agreement is good overall. With such a high spectroscopic coverage at z &lt;  2, we will be able to measure AGN demography, scaling relations, and clustering from the epoch of the peak of AGN activity down to the present-day Universe for hundreds of thousands of AGN with homogeneous spectroscopic information
    corecore