319 research outputs found

    Local Electroelastic Field and Effective Electroelastic Moduli of Piezoelectric Nanocomposites with Interface Effect

    Get PDF
    Due to the large ratio of surface area to volume in nanoscale objects, the property of surfaces and interfaces likely becomes a prominent factor in controlling the behavior of nano-heterogeneous materials. In this work, based on the Gurtin-Murdoch surface/interface elastic theory, a distinct expression is derived for embedded nano-inclusion in an infinite piezoelectric matrix coupled with interface effect. For the problem of a spherical inclusion in transversely isotropic piezoelectric medium, we reach a conclusion that the elastic and electric field are uniform when eigen-strain and eigen-electric field imposed on the inclusion are uniform even in the presence of the interface influence. The electroelastic fields in the inclusion are related to both interface electroelastic parameters and the radius of the inclusion. Then overall properties of the composites are estimated by using the dilute distribution model. Numerical results reveal that the effective electroelastic moduli are function of the interface parameters and the size of the nano-inhomogeneities

    Flexoelectricity in Solid Dielectrics: From Theory to Applications

    Get PDF
    Flexoelectricity phenomenologically describes the universal electromechanical coupling effect between electric polarization and strain gradient, and electric field gradient and elastic strain. In contrast to piezoelectricity which is invalid in materials with inversion symmetry, flexoelectricity exists, commonly, in all solid dielectrics. In this paper, a summary of the research on flexoelectricity is presented to illustrate the development of this topic. Flexoelectricity still have many open questions and unresolved issues in the developing field, although it has attracted a surge of attention recently. Here we review the theoretical investigations and experimental studies on flexoelectricity, and the aim of the current paper is to look into the potential applications of this electromechanical coupling effect

    Aerodynamic optimization of an adaptive flap for next-generation green aircraft

    Get PDF
    Adaptive, morphing flaps are taking ever-increasing attention in civil aviation thanks to the expected benefits this technology can bring at the aircraft level in terms of high-lift performance improvement and related fuel burnt reduction per flight. Relying upon morphing capabilities, it is possible to fix a unique setting for the flap and adapt the flap shape to match the aerodynamic requirements for take-off or landing. The proper morphed shapes can assure better high-lift performances than those achievable by referring to a conventional flap. Moreover, standing the unique flap setting for take-off and landing, a dramatic simplification of the flap deployment systems may be achieved. As a consequence of this simplification, the deployment system can be fully hosted in the wing, thus avoiding under-wing nacelles with significantly better aerodynamics and fuel consumption. The first step for a rational design of an adaptive flap consists in defining the target morphed shapes and the unique optimal flap setting in the take-off and landing phases. In this work, aerodynamic optimization analyses are carried out to determine the best flap setting and related morphed shapes in compliance with the take-off and landing requirements of a reference civil transport aircraft. Four different initial conditions are adopted to avoid the optimization falling into local optima, thus obtaining four groups of optimal candidate configurations. After comparing each candidate's performance through 2D and 3D simulations, the optimal configuration has been selected. 2D simulations show that the optimal configuration is characterized by a maximum lift increase of 31.92% in take-off and 9.04% in landing. According to 3D simulations, the rise in maximum lift equals 22.26% in take-off and 3.50% in landing. Numerical results are finally verified through wind tunnel tests, and the aerodynamic mechanism behind the obtained improvements is explained by carefully analyzing the flow field around the flap

    An agent- and GIS-based virtual city creator: A case study of Beijing, China

    Get PDF
    Many agent-based integrated urban models have been developed to investigate urban issues, considering the dynamics and feedbacks in complex urban systems. The lack of disaggregate data, however, has become one of the main barriers to the application of these models, though a number of data synthesis methods have been applied. To generate a complete dataset that contains full disaggregate input data for model initialization, this paper develops a virtual city creator as a key component of an agent-based land-use and transport model, SelfSim. The creator is a set of disaggregate data synthesis methods, including a genetic algorithm (GA)-based population synthesizer, a transport facility synthesizer, an activity facility synthesizer and a daily plan generator, which use the household travel survey data as the main input. Finally, the capital of China, Beijing, was used as a case study. The creator was applied to generate an agent- and Geographic Information System (GIS)-based virtual Beijing containing individuals, households, transport and activity facilities, as well as their attributes and linkages

    Integrated metabolomic and transcriptomic analysis provides insights into the browning of walnut endocarps

    Get PDF
    Walnut (Juglans regia L.) is an important woody plant worldwide, and endocarp color affects the economic value of walnut. During the postharvest processing and storage of walnut, the endocarp often undergoes browning. Browning has become a major obstacle to walnut storage, not only affecting the taste and flavor of walnuts but also reducing their nutritional quality and commercial value. In the present study, to elucidate the molecular mechanism of walnut endocarp browning, analyses of the ultrastructure, physiological characteristics, and transcriptomic and metabolomic data of walnut endocarps at different storage periods were performed. Integrated transcriptomic and metabolomic analysis showed that many differentially expressed genes (DEGs) and metabolites (DAMs) were involved in the pathways of flavonoid biosynthesis, amino acid biosynthesis, unsaturated fatty acid biosynthesis, phenylalanine metabolism, and oxidative phosphorylation. Among them, the expression levels of DEGs related to flavonoid metabolism and antioxidant activity had significant differences during their storage periods. In addition, the expression of stress-related transcription factors AP2/ERF, WRKY, bHLH, HSF, and MYB involved in the phenylpropanoid metabolic pathway was significantly upregulated during the browning process. This study comprehensively analyzed the causes of walnut endocarp browning, providing insights for studying the molecular mechanism of endocarp browning during storage and processing of walnuts and other fruits

    Children neuropsychological and behavioral scale-revision 2016 in the early detection of autism spectrum disorder

    Get PDF
    BackgroundThe Children Neuropsychological and Behavioral Scale-Revision 2016 (CNBS-R2016) is a widely used developmental assessment tool for children aged 0–6 years in China. The communication warning behavior subscale of CNBS-R2016 is used to assess the symptoms of autism spectrum disorder (ASD), and its value of >30 points indicates ASD based on CNBS-R2016. However, we observed that children with relatively lower values were also diagnosed with ASD later on in clinical practice. Thus, this study aimed to identify the suitable cutoff value for ASD screening recommended by the communication warning behavior of CNBS-R2016.Materials and methodsA total of 90 typically developing (TD) children and 316 children with developmental disorders such as ASD, developmental language disorder (DLD), and global developmental delay (GDD; 130 in the ASD group, 100 in the DLD group, and 86 in the GDD group) were enrolled in this study. All subjects were evaluated based on the CNBS-R2016. The newly recommended cutoff value of communication warning behavior for screening ASD was analyzed with receiver operating curves.ResultsChildren in the ASD group presented with lower developmental levels than TD, DLD, and GDD groups in overall developmental quotient assessed by CNBS-R2016. We compared the consistency between the scores of communication warning behavior subscale and Autism Behavior Checklist (ABC), Childhood Autism Rating Scale (CARS), Autism Diagnostic Observation Schedule, second edition (ADOS-2), and clinical diagnosis for the classification of ASD at a value of 30 based on the previously and newly recommended cutoff value of 12 by the CNBS-R2016. The Kappa values between the communication warning behavior and ABC, CARS, ADOS-2, and clinical diagnosis were 0.494, 0.476, 0.137, and 0.529, respectively, with an agreement rate of 76.90%, 76.26%, 52.03%, and 82.27%, respectively, when the cutoff point was 30. The corresponding Kappa values were 0.891, 0.816, 0.613, and 0.844, respectively, and the corresponding agreement rate was 94.62%, 90.82%, 90.54%, and 93.10%, respectively, when the cutoff point was 12.ConclusionThe communication warning behavior subscale of CNBS-R2016 is important for screening ASD. When the communication warning behavior score is 12 points or greater, considerable attention and further comprehensive diagnostic evaluation for ASD are required to achieve the early detection and diagnosis of ASD in children
    corecore