3,480 research outputs found
On the relationship between sigma models and spin chains
We consider the two-dimensional non-linear sigma model with
topological term using a lattice regularization introduced by Shankar and Read
[Nucl.Phys. B336 (1990), 457], that is suitable for studying the strong
coupling regime. When this lattice model is quantized, the coefficient
of the topological term is quantized as , with integer or
half-integer. We study in detail the relationship between the low energy
behaviour of this theory and the one-dimensional spin- Heisenberg model. We
generalize the analysis to sigma models with other symmetries.Comment: To appear in Int. J. MOd. Phys.
Application of the CINGEN program a thermal network data generator
The application of the CINGEN computer program and two of its supporting programs for the evaluation of structural and thermal performance of physical systems was described. The CINGEN program was written and implemented to avoid the duplication effort of performing a finite element approach for structural analysis and a finite differencing technique for thermal analysis, as well as the desire for a geometrical representation of the thermal model to reduce modeling errors. The program simplifies the thermal modeling process by performing all of the capacitance and conductance calculations normally done by the analyst. Each solid element is divided into five tetrahedrons, allowing the total volume to be calculated precisely. A sample problem was illustrated
Spin transition in GdN@C, detected by low-temperature on-chip SQUID technique
We present a magnetic study of the GdN@C molecule, consisting of a
Gd-trimer via a Nitrogen atom, encapsulated in a C cage. This molecular
system can be an efficient contrast agent for Magnetic Resonance Imaging (MRI)
applications. We used a low-temperature technique able to detect small magnetic
signals by placing the sample in the vicinity of an on-chip SQUID. The
technique implemented at NHMFL has the particularity to operate in high
magnetic fields of up to 7 T. The GdN@C shows a paramagnetic
behavior and we find a spin transition of the GdN structure at 1.2 K. We
perform quantum mechanical simulations, which indicate that one of the Gd ions
changes from a state () to a state (), likely due to a charge transfer between the C cage and the ion
Searching for Weak or Complex Magnetic Fields in Polarized Spectra of Rigel
Seventy-eight high-resolution Stokes V, Q and U spectra of the B8Iae
supergiant Rigel were obtained with the ESPaDOnS spectropolarimeter at CFHT and
its clone NARVAL at TBL in the context of the Magnetism in Massive Stars
(MiMeS) Large Program, in order to scrutinize this core-collapse supernova
progenitor for evidence of weak and/or complex magnetic fields. In this paper
we describe the reduction and analysis of the data, the constraints obtained on
any photospheric magnetic field, and the variability of photospheric and wind
lines.Comment: IAUS272 - Active OB Stars: Structure, Evolution, Mass Loss and
Critical Limit
The amplitude and the resonant transition from lattice QCD
We present a determination of the -wave
transition amplitude from lattice quantum chromodynamics. Matrix elements of
the vector current in a finite-volume are extracted from three-point
correlation functions, and from these we determine the infinite-volume
amplitude using a generalization of the Lellouch-L\"uscher formalism. We
determine the amplitude for a range of discrete values of the energy
and virtuality of the photon, and observe the expected dynamical enhancement
due to the resonance. Describing the energy dependence of the amplitude,
we are able to analytically continue into the complex energy plane and from the
residue at the pole extract the transition
form factor. This calculation, at MeV, is the first to
determine the form factor of an unstable hadron within a first principles
approach to QCD.Comment: 20 pages, 16 figures, 3 table
HD 156324: a tidally locked magnetic triple spectroscopic binary with a disrupted magnetosphere
HD 156324 is an SB3 (B2V/B5V/B5V) system in the Sco OB4 association. The
He-strong primary possesses both a strong magnetic field, and H
emission believed to originate in its Centrifugal Magnetosphere (CM). We
analyse a large spectroscopic and high-resolution spectropolarimetric dataset.
The radial velocities (RVs) indicate that the system is composed of two
sub-systems, which we designate A and B. Period analysis of the RVs of the
three components yields orbital periods ~d for the Aa
and Ab components, and 6.67(2)~d for the B component, a PGa star. Period
analysis of the longitudinal magnetic field \bz~and H equivalent
widths, which should both be sensitive to the rotational period
of the magnetic Aa component, both yield 1.58~d. Since Aa and Ab must be tidally locked. Consistent with this, the orbit
is circularized, and the rotational and orbital inclinations are identical
within uncertainty, as are the semi-major axis and the Kepler corotation
radius. The star's H emission morphology differs markedly from both
theoretical and observational expectations in that there is only one, rather
than two, emission peaks. We propose that this unusual morphology may be a
consequence of modification of the gravitocentrifugal potential by the presence
of the close stellar companion. We also obtain upper limits on the magnetic
dipole strength for the Ab and B components, respectively finding
~kG and ~kG.Comment: 15 pages, 10 figures, 3 tables, accepted for publication in MNRAS
(reference MN-17-3873-MJ.R1
Control of the cation occupancies of MnZn ferrite synthesized via reverse micelles
Variations in cation occupancy in mixed metal ferrite systems can affect their electronic and magnetic properties. It is known that different synthesis parameters can lead to various cation distributions and the ability to tune these distributions is of great interest. This study uses the extended x-ray-absorption fine structure–IR relationship to investigate the effect of various Fe2+/Fe3+ ratios in initial synthesis conditions on cation distribution for manganesezincferrite (MZFO). Differences in the precipitated material before firing could lead to differences in the final material if fired under similar conditions. This work uses several different ratios of Fe3+/Fe2+, which will affect the initial cell potential for the reaction, to synthesize nano MZFO. All samples were fired for 5h at 500°C under flowing nitrogen. Transmission electron microscopy micrographs reveal highly crystalline uniform nanoparticles of 16±2nm. The x-ray diffraction revealed single phase crystalline MZFO with an average crystallite size of around 14nm. The saturation magnetization ranged from 43to68emu∕g as measured by vibrating-sample magnetometry. The Fourier transform infrared (FTIR) analysis was used to determine the cation occupancies while changing the initial Fe3+/Fe2+ ratios from 10∕90 to90∕10. The FTIRspectra revealed a shift in the first absorption region in the far IR from 566.98to549.62cm−1 corresponding to the octahedral occupancies. This shift corresponds to a change in the percentage of octahedral sites occupied by manganese from roughly 25% to 12%. This change in manganese occupancy is also observed in the iron occupancies, which in turn help to explain the variation in saturation magnetization
Na(V)1.5 sodium channel window currents contribute to spontaneous firing in olfactory sensory neurons
Olfactory sensory neurons (OSNs) fire spontaneously as well as in response to odor; both forms of firing are physiologically important. We studied voltage-gated Na+ channels in OSNs to assess their role in spontaneous activity. Whole cell patch-clamp recordings from OSNs demonstrated both tetrodotoxin-sensitive and tetrodotoxin-resistant components of Na+ current. RT-PCR showed mRNAs for five of the nine different Na+ channel α-subunits in olfactory tissue; only one was tetrodotoxin resistant, the so-called cardiac subtype NaV1.5. Immunohistochemical analysis indicated that NaV1.5 is present in the apical knob of OSN dendrites but not in the axon. The NaV1.5 channels in OSNs exhibited two important features: 1) a half-inactivation potential near −100 mV, well below the resting potential, and 2) a window current centered near the resting potential. The negative half-inactivation potential renders most NaV1.5 channels in OSNs inactivated at the resting potential, while the window current indicates that the minor fraction of noninactivated NaV1.5 channels have a small probability of opening spontaneously at the resting potential. When the tetrodotoxin-sensitive Na+ channels were blocked by nanomolar tetrodotoxin at the resting potential, spontaneous firing was suppressed as expected. Furthermore, selectively blocking NaV1.5 channels with Zn2+ in the absence of tetrodotoxin also suppressed spontaneous firing, indicating that NaV1.5 channels are required for spontaneous activity despite resting inactivation. We propose that window currents produced by noninactivated NaV1.5 channels are one source of the generator potentials that trigger spontaneous firing, while the upstroke and propagation of action potentials in OSNs are borne by the tetrodotoxin-sensitive Na+ channel subtypes.This work was aided by support from Boston University, the Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD) P30 DC-04657; D. Restrepo, principal investigator], and NIDCD Grants DC-04863 to V. Dionne and DC-006070 to D. Restrepo and T. E. Finger. (Boston University; P30 DC-04657 - Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD)]; DC-04863 - Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD)]; DC-006070 - Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD)])https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122723/Accepted manuscrip
- …
