361 research outputs found
First science results from SOFIA/FORCAST: The mid-infrared view of the compact HII region W3A
The massive star forming region W3 was observed with the faint object
infrared camera for the SOFIA telescope (FORCAST) as part of the Short Science
program. The 6.4, 6.6, 7.7, 19.7, 24.2, 31.5 and 37.1 \um bandpasses were used
to observe the emission of Polycyclic Aromatic Hydrocarbon (PAH) molecules,
Very Small Grains and Big Grains. Optical depth and color temperature maps of
W3A show that IRS2 has blown a bubble devoid of gas and dust of 0.05 pc
radius. It is embedded in a dusty shell of ionized gas that contributes 40% of
the total 24 \um emission of W3A. This dust component is mostly heated by far
ultraviolet, rather than trapped Ly photons. This shell is itself
surrounded by a thin (0.01 pc) photodissociation region where PAHs show
intense emission. The infrared spectral energy distribution (SED) of three
different zones located at 8, 20 and 25\arcsec from IRS2, show that the peak of
the SED shifts towards longer wavelengths, when moving away from the star.
Adopting the stellar radiation field for these three positions, DUSTEM model
fits to these SEDs yield a dust-to-gas mass ratio in the ionized gas similar to
that in the diffuse ISM. However, the ratio of the IR-to-UV opacity of the dust
in the ionized shell is increased by a factor 3 compared to the diffuse
ISM.Comment: Accepted for publication in ApJ letters; 13 pages, 3 figures 1 tabl
The Study on Cracking Strength of AIJs to Release the Early-Age Stress of Mass Concrete
This paper aims to theoretically and numerically assess the effect of setting artificial-induced joints (AIJs) during construction period of amass concrete structure to release the early-stage thermal stress. With respect to the coupling influences of various factors such as size and boundary of AIJs, an analytical model for its cracking strength on the setting section of mass concrete is proposed based on double-parameter fracture theory. A kind of hyper-finite element analysis (FEA) for many array AIJs in simplified plane pate is also presented by using bilinear cohesive force distribution. The results from the present model and numerical simulation were compared to those of experimental data to prove the efficiency and accuracy of the analytical model and FEA. The model presented in this study for the cracking strength of AIJs provides a simple useful tool to accurately evaluate how many early stress AIJs reduced. The theoretical solution and FEA results could also be significantly contributed to find the "just" and "perfect" release of the temperature stress and to improve the design level of AIJs in mass concrete structure
The gas temperature in flaring disks around pre-main sequence stars
A model is presented which calculates the gas temperature and chemistry in
the surface layers of flaring circumstellar disks using a code developed for
photon-dominated regions. Special attention is given to the influence of dust
settling. It is found that the gas temperature exceeds the dust temperature by
up to several hundreds of Kelvins in the part of the disk that is optically
thin to ultraviolet radiation, indicating that the common assumption that
Tgas=Tdust is not valid throughout the disk. In the optically thick part, gas
and dust are strongly coupled and the gas temperature equals the dust
temperature. Dust settling has little effect on the chemistry in the disk, but
increases the amount of hot gas deeper in the disk. The effects of the higher
gas temperature on several emission lines arising in the surface layer are
examined. The higher gas temperatures increase the intensities of molecular and
fine-structure lines by up to an order of magnitude, and can also have an
important effect on the line shapes.Comment: 14 pages, 10 figures, accepted for publication in A&
Massive star formation and feedback in W49A: The source of our Galaxy's most luminous water maser outflow
We present high spatial resolution mid-IR images of the ring of UCHII regions
in W49A obtained at Gemini North, allowing us to identify the driving source of
its powerful H2O maser outflow. These data also confirm our previous report
that several radio sources in the ring are undetected in the mid-IR because
they are embedded deep inside the cloud core. We locate the source of the water
maser outflow at the position of the compact mid-IR peak of source G (source
G:IRS1). This IR source is not coincident with any identified compact radio
continuum source, but is coincident with a hot molecular core, so we propose
that G:IRS1 is a hot core driving an outflow analogous to the wide-angle
bipolar outflow in OMC-1. G:IRS1 is at the origin of a larger bipolar cavity
and CO outflow. The water maser outflow is orthogonal to the bipolar CO cavity,
so the masers probably reside near its waist in the cavity walls. Models of the
IR emission require a massive protostar of 45Msun, 3e5Lsun, and an effective
envelope accretion rate of 1e-3Msun/yr. Feedback from the central star could
potentially drive the H2O maser outflow, but it has insufficient radiative
momentum to have driven the large-scale CO outflow, requiring that this massive
star had an active accretion disk over the past 10^4 yr. Combined with the
spatialy resolved morphology in IR images, G:IRS1 in W49 provides compelling
evidence for a massive protostar that formed by accreting from a disk,
accompanied by a bipolar outflow.Comment: 14 pages, MNRAS accepte
Resolved 24.5 micron emission from massive young stellar objects
Massive young stellar objects (MYSO) are surrounded by massive dusty
envelopes. Our aim is to establish their density structure on scales of ~1000
AU, i.e. a factor 10 increase in angular resolution compared to similar studies
performed in the (sub)mm. We have obtained diffraction-limited (0.6") 24.5
micron images of 14 well-known massive star formation regions with
Subaru/COMICS. The images reveal the presence of discrete MYSO sources which
are resolved on arcsecond scales. For many sources, radiative transfer models
are capable of satisfactorily reproducing the observations. They are described
by density powerlaw distributions (n(r) ~ r^(-p)) with p = 1.0 +/-0.25. Such
distributions are shallower than those found on larger scales probed with
single-dish (sub)mm studies. Other sources have density laws that are
shallower/steeper than p = 1.0 and there is evidence that these MYSOs are
viewed near edge-on or near face-on, respectively. The images also reveal a
diffuse component tracing somewhat larger scale structures, particularly
visible in the regions S140, AFGL 2136, IRAS 20126+4104, Mon R2, and Cep A. We
thus find a flattening of the MYSO envelope density law going from ~10 000 AU
down to scales of ~1000 AU. We propose that this may be evidence of rotational
support of the envelope (abridged).Comment: 21 pages, accepted for A&
Caloric restriction augments radiation efficacy in breast cancer.
Dietary modification such as caloric restriction (CR) has been shown to decrease tumor initiation and progression. We sought to determine if nutrient restriction could be used as a novel therapeutic intervention to enhance cytotoxic therapies such as radiation (IR) and alter the molecular profile of triple-negative breast cancer (TNBC), which displays a poor prognosis. In two murine models of TNBC, significant tumor regression is noted with IR or diet modification, and a greater regression is observed combining diet modification with IR. Two methods of diet modification were compared, and it was found that a daily 30% reduction in total calories provided more significant tumor regression than alternate day feeding. At the molecular level, tumors treated with CR and IR showed less proliferation and more apoptosis. cDNA array analysis demonstrated the IGF-1R pathway plays a key role in achieving this physiologic response, and multiple members of the IGF-1R pathway including IGF-1R, IRS, PIK3ca and mTOR were found to be downregulated. The innovative use of CR as a novel therapeutic option has the potential to change the biology of tumors and enhance the opportunity for clinical benefit in the treatment of patients with TNBC
Eye movements and brain oscillations to symbolic safety signs with different comprehensibility
Background: The aim of this study was to investigate eye movements and brain oscillations to symbolic safety signs with different comprehensibility. Methods: Forty-two young adults participated in this study, and ten traffic symbols consisting of easy-to-comprehend and hard-to-comprehend signs were used as stimuli. During the sign comprehension test, real-time eye movements and spontaneous brain activity [electroencephalogram (EEG) data] were simultaneously recorded. Results: The comprehensibility level of symbolic traffic signs significantly affects eye movements and EEG spectral power. The harder to comprehend the sign is, the slower the blink rate, the larger the pupil diameter, and the longer the time to first fixation. Noticeable differences on EEG spectral power between easy-to-comprehend and hard-to-comprehend signs are observed in the prefrontal and visual cortex of the human brain. Conclusions: Sign comprehensibility has significant effects on real-time nonintrusive eye movements and brain oscillations. These findings demonstrate the potential to integrate physiological measures from eye movements and brain oscillations with existing evaluation methods in assessing the comprehensibility of symbolic safety signs.open
Potential applications of nanotechnology in thermochemical conversion of microalgal biomass
The rapid decrease in fossil reserves has significantly increased the demand of renewable and sustainable energy fuel resources. Fluctuating fuel prices and significant greenhouse gas (GHG) emission levels have been key impediments associated with the production and utilization of nonrenewable fossil fuels. This has resulted in escalating interests to develop new and improve inexpensive carbon neutral energy technologies to meet future demands. Various process options to produce a variety of biofuels including biodiesel, bioethanol, biohydrogen, bio-oil, and biogas have been explored as an alternative to fossil fuels. The renewable, biodegradable, and nontoxic nature of biofuels make them appealing as alternative fuels. Biofuels can be produced from various renewable resources. Among these renewable resources, algae appear to be promising in delivering sustainable energy options. Algae have a high carbon dioxide (CO2) capturing efficiency, rapid growth rate, high biomass productivity, and the ability to grow in non-potable water. For algal biomass, the two main conversion pathways used to produce biofuel include biochemical and thermochemical conversions. Algal biofuel production is, however, challenged with process scalability for high conversion rates and high energy demands for biomass harvesting. This affects the viable achievement of industrial-scale bioprocess conversion under optimum economy. Although algal biofuels have the potential to provide a sustainable fuel for future, active research aimed at improving upstream and downstream technologies is critical. New technologies and improved systems focused on photobioreactor design, cultivation optimization, culture dewatering, and biofuel production are required to minimize the drawbacks associated with existing methods. Nanotechnology has the potential to address some of the upstream and downstream challenges associated with the development of algal biofuels. It can be applied to improve system design, cultivation, dewatering, biomass characterization, and biofuel conversion. This chapter discusses thermochemical conversion of microalgal biomass with recent advances in the application of nanotechnology to enhance the development of biofuels from algae. Nanotechnology has proven to improve the performance of existing technologies used in thermochemical treatment and conversion of biomass. The different bioprocess aspects, such as reactor design and operation, analytical techniques, and experimental validation of kinetic studies, to provide insights into the application of nanotechnology for enhanced algal biofuel production are addressed
Thermal Dust Emission from Proplyds, Unresolved Disks, and Shocks in the Orion Nebula
We present a new 11.7 micron mosaic image of the Orion nebula obtained with
T-ReCS on Gemini South. The map includes the BN/KL region, the Trapezium, and
OMC-1 South. Excluding BN/KL, we detect 91 point sources, with 27 known
proplyds and over 30 ``naked'' stars showing no extended structure in HST
images. Within the region we surveyed, 80 percent of known proplyds show
detectable emission, almost 40 percent of naked stars are detected at 11.7
micron, and the fraction of all visible sources with IR excess emission is
roughly 50 percent. Thermal dust emission from stars with no extended structure
in HST images means that they have dust disks comparable to the size of our
solar system. Proplyds and stars with IR excess show a clear anti-correlation
in their spatial distribution, with proplyds clustered close to theta1C, and
other infrared sources found farther away. We suspect that the clustered
proplyds trace the youngest 0.5 Myr age group associated with the Trapezium,
while the more uniformly-distributed sources trace the older 1-2 Myr population
of the ONC. This suggests that small disks persist for a few Myr in irradiated
environments, and hints that hierarchical sub-clustering has been important.
Within 30 arcsec of theta1C, all proplyds are detected at 11.7 micron. The star
theta1D is associated with the most prominent mid-IR dust arc in the nebula. We
propose that this arc is the consequence of theta1D being the closest member of
the Trapezium to the background cloud. Finally, we detect dust emission from HH
jets in Orion, including HH202, HH529, HH513, and HH514. This is the first
detection of mid-IR continuum emission from dust in the body of a collimated HH
jet or bow shock.Comment: accepted by AJ. 27 pages, 11 figs, 4 color figs. If you actually want
to see the figures, download this version:
ftp://origins.colorado.edu/pub/nathans/smith.trecs.pd
Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro Imaging genetics through meta analysis (ENIGMA) Consortium
BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group.
METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide.
RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset.
CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia
- …
