2,257 research outputs found

    Electrically-induced n-i-p junctions in multiple graphene layer structures

    Full text link
    The Fermi energies of electrons and holes and their densities in different graphene layers (GLs) in the n- and p-regions of the electrically induced n-i-p junctions formed in multiple-GL structures are calculated both numerically and using a simplified analytical model. The reverse current associated with the injection of minority carriers through the n- and p-regions in the electrically-induced n-i-p junctions under the reverse bias is calculated as well. It is shown that in the electrically-induced n-i-p junctions with moderate numbers of GLs the reverse current can be substantially suppressed. Hence, multiple-GL structures with such n-i-p junctions can be used in different electron and optoelectron devices.Comment: 7 pages, 6 figure

    EERTREE: An Efficient Data Structure for Processing Palindromes in Strings

    Full text link
    We propose a new linear-size data structure which provides a fast access to all palindromic substrings of a string or a set of strings. This structure inherits some ideas from the construction of both the suffix trie and suffix tree. Using this structure, we present simple and efficient solutions for a number of problems involving palindromes.Comment: 21 pages, 2 figures. Accepted to IWOCA 201

    Almost overlap-free words and the word problem for the free Burnside semigroup satisfying x^2=x^3

    Get PDF
    In this paper we investigate the word problem of the free Burnside semigroup satisfying x^2=x^3 and having two generators. Elements of this semigroup are classes of equivalent words. A natural way to solve the word problem is to select a unique "canonical" representative for each equivalence class. We prove that overlap-free words and so-called almost overlap-free words (this notion is some generalization of the notion of overlap-free words) can serve as canonical representatives for corresponding equivalence classes. We show that such a word in a given class, if any, can be efficiently found. As a result, we construct a linear-time algorithm that partially solves the word problem for the semigroup under consideration.Comment: 33 pages, submitted to Internat. J. of Algebra and Compu

    Comparison of LZ77-type Parsings

    Full text link
    We investigate the relations between different variants of the LZ77 parsing existing in the literature. All of them are defined as greedily constructed parsings encoding each phrase by reference to a string occurring earlier in the input. They differ by the phrase encodings: encoded by pairs (length + position of an earlier occurrence) or by triples (length + position of an earlier occurrence + the letter following the earlier occurring part); and they differ by allowing or not allowing overlaps between the phrase and its earlier occurrence. For a given string of length nn over an alphabet of size σ\sigma, denote the numbers of phrases in the parsings allowing (resp., not allowing) overlaps by zz (resp., z^\hat{z}) for "pairs", and by z3z_3 (resp., z^3\hat{z}_3) for "triples". We prove the following bounds and provide series of examples showing that these bounds are tight: \bullet zz^zO(lognzlogσz)z \le \hat{z} \le z \cdot O(\log\frac{n}{z\log_\sigma z}) and z3z^3z3O(lognz3logσz3)z_3 \le \hat{z}_3 \le z_3 \cdot O(\log\frac{n}{z_3\log_\sigma z_3}); \bullet 12z^<z^3z^\frac{1}2\hat{z} < \hat{z}_3 \le \hat{z} and 12z<z3z\frac{1}2 z < z_3 \le z.Comment: 6 page

    Plasmonic shock waves and solitons in a nanoring

    Get PDF
    We apply the hydrodynamic theory of electron liquid to demonstrate that a circularly polarized radiation induces the diamagnetic, helicity-sensitive dc current in a ballistic nanoring. This current is dramatically enhanced in the vicinity of plasmonic resonances. The resulting magnetic moment of the nanoring represents a giant increase of the inverse Faraday effect. With increasing radiation intensity, linear plasmonic excitations evolve into the strongly non-linear plasma shock waves. These excitations produce a series of the well resolved peaks at the THz frequencies. We demonstrate that the plasmonic wave dispersion transforms the shock waves into solitons. The predicted effects should enable multiple applications in a wide frequency range (from the microwave to terahertz band) using optically controlled ultra low loss electric, photonic and magnetic devices.Comment: 13 pages, 12 figure
    corecore