26 research outputs found
Absorption spectrum in the wings of the potassium second resonance doublet broadened by helium
We have measured the reduced absorption coefficients occurring in the wings
of the potassium 4S-5P doublet lines at 404.414 nm and at 404.720 nm broadened
by helium gas at pressures of several hundred Torr. At the experimental
temperature of 900 K, we have detected a shoulder-like broadening feature on
the blue wing of the doublet which is relatively flat between 401.8 nm and
402.8 nm and which drops off rapidly for shorter wavelengths, corresponding to
absorption from the X doublet Sigma+ state to the C doublet Sigma+ state of the
K-He quasimolecule. The accurate measurements of the line profiles in the
present work will sharply constrain future calculations of potential energy
surfaces and transition dipole moments correlating to the asymptotes He-K(5p),
He-K(5s), and He-K(3d).Comment: 2 figure
Theoretical study of the absorption spectra of the sodium dimer
Absorption of radiation from the sodium dimer molecular states correlating to
Na(3s)-Na(3s) is investigated theoretically. Vibrational bound and continuum
transitions from the singlet X Sigma-g+ state to the first excited singlet A
Sigma-u+ and singlet B Pi-u states and from the triplet a Sigma-u+ state to the
first excited triplet b Sigma-g+ and triplet c Pi-g states are studied
quantum-mechanically. Theoretical and experimental data are used to
characterize the molecular properties taking advantage of knowledge recently
obtained from ab initio calculations, spectroscopy, and ultra-cold atom
collision studies. The quantum-mechanical calculations are carried out for
temperatures in the range from 500 to 3000 K and are compared with previous
calculations and measurements where available.Comment: 19 pages, 8 figures, revtex, eps
Comparison of Electron-Atom Collision Parameters for S to P Transitions under Reversal of Energy Transfer
Inelastic and superelastic electron scattering from the optically prepared 32P3/2 state of sodium has enabled atomic collision parameters to be deduced for the 4S-3P deexcitation and the 3S-3P excitation processes. These data are compared with convergent close coupling and second order distorted wave Born calculations. For excitation, both theories agree with experiment, whereas for deexcitation the close coupling theory is in better agreement. A long-standing proposal relating to the sign of the transferred angular momentum is not supported
Comparison of Electron-Atom Collision Parameters for S to P Transitions under Reversal of Energy Transfer
Inelastic and superelastic electron scattering from the optically prepared 32P3/2 state of sodium has enabled atomic collision parameters to be deduced for the 4S-3P deexcitation and the 3S-3P excitation processes. These data are compared with convergent close coupling and second order distorted wave Born calculations. For excitation, both theories agree with experiment, whereas for deexcitation the close coupling theory is in better agreement. A long-standing proposal relating to the sign of the transferred angular momentum is not supported
Low energy super-elastic scattering studies of calcium over the complete angular range using a magnetic angle changing device
Recommended from our members
Absorption Spectra of Broadened Sodium Resonance Lines in Presence of Rare Gases
The pressure broadening of alkali-metal lines is a fundamental problem with numerous applications. For example, the sodium resonance lines broadened by xenon are important in the production of broad spectra emitted in the HPS (High-Pressure Sodium) lamp and they potentially can be used for gas condition diagnostics. Broadened absorption lines of alkali-metal atoms are prominent in the optical spectra of brown dwarfs and understanding the broadening mechanism will help elucidate the chemical composition and atmospheric properties of those stars. The far-line wing spectra of sodium resonance lines broadened by rare gases are found to exhibit molecular characteristics such as satellites and hence the total absorption coefficients for vapors of Na atoms and perturbing rare gas atoms can be modeled as Na-RG (rare gas) molecular absorption spectra. In this work, using carefully chosen interatomic potentials for Na-RG molecules we carry out quantum-mechanical calculations for reduced absorption coefficients for vapors composed of Na-He, Na-Ar, and Na-Xe. Calculated spectra are compared to available experimental results and the agreement is good in the measured satellite positions and shapes
