22 research outputs found
Case report: a case of intractable Meniere's disease treated with autogenic training
<p>Abstract</p> <p>Background</p> <p>Psychological stress plays an important role in the onset and course of Meniere's disease. Surgical therapy and intratympanic gentamicin treatment are options for cases that are intractable to conventional medical therapy. Psychotherapy, however, including autogenic training (AT), which can be used for general relaxation, is not widely accepted. This paper describes the successful administration of AT in a subject suffering from intractable Meniere's disease.</p> <p>Case presentation</p> <p>A 51-year-old male patient has suffered from fluctuating right sensorineural hearing loss with vertigo since 1994. In May 2002, he was first admitted to our hospital due to a severe vertigo attack accompanied by right sensorineural hearing loss. Spontaneous nystagmus toward the right side was observed. Since April 2004, he has experienced vertigo spells with right-sided tinnitus a few times per month that are intractable to conventional medical therapy. After four months, tympanic tube insertion was preformed in the right tympanic membrane. Intratympanic injection of dexamethasone was ineffective. He refused Meniett therapy and intratympanic gentamicin injection. In addition to his vertigo spells, he suffered from insomnia, tinnitus, and anxiety. Tranquilizers such as benzodiazepines and antidepressants such as serotonin selective re-uptake inhibitors (SSRIs) failed to stop the vertigo and only slightly improved his insomnia. In December 2006, the patient began psychological counseling with a psychotherapist. After brief psychological counseling along with cognitive behavior therapy (CBT), he began AT. He diligently and regularly continued his AT training in his home according to a written timetable. His insomnia, tinnitus, and vertigo spells disappeared within a few weeks after only four psychotherapy sessions. In order to master the six standard formulas of AT, he underwent two more sessions. Thereafter, he underwent follow-up for 9 months with no additional treatment. He is now free from drugs, including tranquilizers, and has continued AT. No additional treatment was performed. When we examined him <b>six </b>and nine months later for follow-up, he was free of vertigo and insomnia.</p> <p>Conclusion</p> <p>AT together with CBT can be a viable and palatable treatment option for Meniere's disease patients who are not responsive to other therapies.</p
Cloudy with a Chance of Pain: Engagement and Subsequent Attrition of Daily Data Entry in a Smartphone Pilot Study Tracking Weather, Disease Severity, and Physical Activity in Patients With Rheumatoid Arthritis
What is important in transdisciplinary pain neuroscience education? : A qualitative study
Purpose: The main focus of Pain Neuroscience Education is around changing patients’ pain perceptions and minimizing further medical care. Even though Pain Neuroscience Education has been studied extensively, the experiences of patients regarding the Pain Neuroscience Education process remain to be explored. Therefore, the aim of this study was to explore the experiences in patients with non-specific chronic pain. Materials and methods: Fifteen patients with non-specific chronic pain from a transdisciplinary treatment centre were in-depth interviewed. Data collection and analysis were performed according to Grounded Theory. Results: Five interacting topics emerged: (1) “the pre-Pain Neuroscience Education phase”, involving the primary needs to provide Pain Neuroscience Education, with subthemes containing (a) “a broad intake” and (b) “the healthcare professionals”; (2) “a comprehensible Pain Neuroscience Education” containing (a) “understandable explanation” and (b) “interaction between the physiotherapist and psychologist”; (3) “outcomes of Pain Neuroscience Education” including (a) “awareness”, b) “finding peace of mind”, and (c) “fewer symptoms”; 4) “"scepticism” containing (a) “doubt towards the diagnosis and Pain Neuroscience Education”, (b) “disagreement with the diagnosis and Pain Neuroscience Education”, and (c) “Pain Neuroscience Education can be confronting”. Conclusion: This is the first study providing insight into the constructs contributing to the Pain Neuroscience Education experience of patients with non-specific chronic pain. The results reveal the importance of the therapeutic alliance between the patient and caregiver, taking time, listening, providing a clear explanation, and the possible outcomes when doing so. The findings from this study can be used to facilitate healthcare professionals in providing Pain Neuroscience Education to patients with non-specific chronic pain. Implications for RehabilitationAn extensive biopsychosocial patient centred intake is crucial prior to providing Pain Neuroscience Education.Repetitions of Pain Neuroscience Education, in different forms (verbal and written information, examples, drawings, etc.) help patients to understand the theory of neurophysiology.Pain Neuroscience Education induces insight into the patient’s complaints, improved coping with complaints, improved self-control, and induces in some cases peace of mind.Healthcare professionals providing Pain Neuroscience Education should be aware of the possible confronting nature of the contributing factors
Does weather affect daily pain intensity levels in patients with acute low back pain? A prospective cohort study
Haloperidol both prevents and reverses quinpirole-induced nonregulatory water intake, a putative animal model of psychogenic polydipsia
Opposite roles of dopamine and orexin in quinpirole-induced excessive drinking: a rat model of psychotic polydipsia
Repeated administration of the dopamine D2/D3 agonist quinpirole (QNP) progressively increases non-regulatory water intake. This effect may model psychotic polydipsia, a potentially fatal but poorly understood condition. The growing evidence for a role of orexin in mediating arousal and cognition has linked this peptide to schizophrenia, hence we examined whether manipulations of dopaminergic and orexinergic systems, as well as of setting, would further characterize the model. Water intake was measured in rats sequentially tested in home and then operant conditioning setting, with chronic administration of D2 antagonist haloperidol (Hal) prior to QNP treatment. A group of rats similarly treated was also assessed for orexin A (OxA) expression in the cortex. Finally, the effect of the orexin-1 receptor antagonist SB-334867 on QNP-induced polydipsia was evaluated. In rats made polydipsic by QNP the amount of water drank during the first 4 h was strongly correlated with the degree of dissociation between appetitive and consummatory components of drinking behavior in the following hour of operant access to water. Hal 0.2 mg/kg prevented both polydipsia and the dissociation, while 0.1 mg/kg only blocked the dissociation. Chronic QNP treatment increased, in a Hal-reversible way, OxA expression in the somatosensory cortex (SI). Moreover, pretreatment with SB-334867 sped up and potentiated QNP-induced polydipsia. Results disclose compulsive components in QNP-induced polydipsia that are mediated by dopamine D2 receptors. QNP also regulates OxA expression in the SI, while the block of orexin-1 receptors enhances QNP-induced polydipsia. We suggest that dopamine and OxA play opposite roles in QNP-induced polydipsia
