1,303 research outputs found
Coalescence of Pickering emulsion droplets induced by an electric field
Combining high-speed photography with electric current measurement, we
investigate the electrocoalescence of Pickering emulsion droplets. Under high
enough electric field, the originally-stable droplets coalesce via two distinct
approaches: normal coalescence and abnormal coalescence. In the normal
coalescence, a liquid bridge grows continuously and merges two droplets
together, similar to the classical picture. In the abnormal coalescence,
however, the bridge fails to grow indefinitely; instead it breaks up
spontaneously due to the geometric constraint from particle shells. Such
connecting-then-breaking cycles repeat multiple times, until a stable
connection is established. In depth analysis indicates that the defect size in
particle shells determines the exact merging behaviors: when the defect size is
larger than a critical size around the particle diameter, normal coalescence
will show up; while abnormal coalescence will appear for coatings with smaller
defects.Comment: 5 pages, 5 figure
Tactical fixed job scheduling with spread-time constraints
We address the tactical fixed job scheduling problem with spread-time constraints.
In such a problem, there are a fixed number of classes of machines and a fixed number of groups of jobs. Jobs of the same group can only be processed by machines of a given set of classes. All jobs have their fixed
start and end times. Each machine is associated with a cost according to its machine class. Machines have spread-time constraints, with which each machine
is only available for L consecutive time units from the start time of the earliest job assigned to it. The objective is to minimize the total cost of the machines used to process all the jobs. For this strongly NP-hard problem, we develop a branch-and-price algorithm, which solves instances with up to 300 jobs, as compared with CPLEX, which cannot solve instances of 100 jobs.
We further investigate the influence of machine flexibility by computational experiments. Our results show that limited machine flexibility is sufficient in most situations
Optimizing Average-Maximum TTR Trade-off for Cognitive Radio Rendezvous
In cognitive radio (CR) networks, "TTR", a.k.a. time-to-rendezvous, is one of
the most important metrics for evaluating the performance of a channel hopping
(CH) rendezvous protocol, and it characterizes the rendezvous delay when two
CRs perform channel hopping. There exists a trade-off of optimizing the average
or maximum TTR in the CH rendezvous protocol design. On one hand, the random CH
protocol leads to the best "average" TTR without ensuring a finite "maximum"
TTR (two CRs may never rendezvous in the worst case), or a high rendezvous
diversity (multiple rendezvous channels). On the other hand, many
sequence-based CH protocols ensure a finite maximum TTR (upper bound of TTR)
and a high rendezvous diversity, while they inevitably yield a larger average
TTR. In this paper, we strike a balance in the average-maximum TTR trade-off
for CR rendezvous by leveraging the advantages of both random and
sequence-based CH protocols. Inspired by the neighbor discovery problem, we
establish a design framework of creating a wake-up schedule whereby every CR
follows the sequence-based (or random) CH protocol in the awake (or asleep)
mode. Analytical and simulation results show that the hybrid CH protocols under
this framework are able to achieve a greatly improved average TTR as well as a
low upper-bound of TTR, without sacrificing the rendezvous diversity.Comment: Accepted by IEEE International Conference on Communications (ICC
2015, http://icc2015.ieee-icc.org/
Evaluation of Trace Alignment Quality and its Application in Medical Process Mining
Trace alignment algorithms have been used in process mining for discovering
the consensus treatment procedures and process deviations. Different alignment
algorithms, however, may produce very different results. No widely-adopted
method exists for evaluating the results of trace alignment. Existing
reference-free evaluation methods cannot adequately and comprehensively assess
the alignment quality. We analyzed and compared the existing evaluation
methods, identifying their limitations, and introduced improvements in two
reference-free evaluation methods. Our approach assesses the alignment result
globally instead of locally, and therefore helps the algorithm to optimize
overall alignment quality. We also introduced a novel metric to measure the
alignment complexity, which can be used as a constraint on alignment algorithm
optimization. We tested our evaluation methods on a trauma resuscitation
dataset and provided the medical explanation of the activities and patterns
identified as deviations using our proposed evaluation methods.Comment: 10 pages, 6 figures and 5 table
Optimal Storage and Retrieval of Single-Photon Waveforms
We report an experimental demonstration of optimal storage and retrieval of
heralded single-photon wave packets using electromagnetically induced
transparency (EIT) in cold atoms at a high optical depth. We obtain an optimal
storage efficiency of (49+/-3)% for single-photon waveforms with a temporal
likeness of 96%. Our result brings the EIT quantum light-matter interface close
to practical quantum information applications.Comment: 5 pages, 4 figure
Glucose-fueled Micromotors with Highly Efficient Visible Light Photocatalytic Propulsion
Synthetic micro/nanomotors fueled by glucose are highly desired for numerous practical applications because of the biocompatibility of their required fuel. However, currently all of the glucose-fueled micro/nanomotors are based on enzyme-catalytic-driven mechanisms, which usually suffer from strict operation conditions and weak propulsion characteristics that greatly limit their applications. Here, we report a highly efficient glucose-fueled cuprous oxide@N-doped carbon nanotube (Cu_2O@N-CNT) micromotor, which can be activated by environment-friendly visible-light photocatalysis. The speeds of such Cu_2O@N-CNT micromotors can reach up to 18.71 μm/s, which is comparable to conventional Pt-based catalytic Janus micromotors usually fueled by toxic H_2O_2 fuel. In addition, the velocities of such motors can be efficiently regulated by multiple approaches, such as adjusting the N-CNT content within the micromotors, glucose concentrations, or light intensities. Furthermore, the Cu_2O@N-CNT micromotors exhibit a highly controllable negative phototaxis behavior (moving away from light sources). Such motors with outstanding propulsion in biological environments and wireless, repeatable, and light-modulated three-dimensional motion control are extremely attractive for future practical applications
Phosphoantigen/IL2 Expansion and Differentiation of Vγ2Vδ2 T Cells Increase Resistance to Tuberculosis in Nonhuman Primates
Dominant Vγ2Vδ2 T-cell subset exist only in primates, and recognize phosphoantigen from selected pathogens including M. tuberculosis(Mtb). In vivo function of Vγ2Vδ2 T cells in tuberculosis remains unknown. We conducted mechanistic studies to determine whether earlier expansion/differentiation of Vγ2Vδ2 T cells during Mtb infection could increase immune resistance to tuberculosis in macaques. Phosphoantigen/IL-2 administration specifically induced major expansion and pulmonary trafficking/accumulation of phosphoantigen-specific Vγ2Vδ2 T cells, significantly reduced Mtb burdens and attenuated tuberculosis lesions in lung tissues compared to saline/BSA or IL-2 controls. Expanded Vγ2Vδ2 T cells differentiated into multifunctional effector subpopulations capable of producing anti-TB cytokines IFNγ, perforin and granulysin, and co-producing perforin/granulysin in lung tissue. Mechanistically, perforin/granulysin-producing Vγ2Vδ2 T cells limited intracellular Mtb growth, and macaque granulysin had Mtb-bactericidal effect, and inhibited intracellular Mtb in presence of perforin. Furthermore, phosphoantigen/IL2-expanded Vγ2Vδ2 T effector cells produced IL-12, and their expansion/differentiation led to enhanced pulmonary responses of peptide-specific CD4+/CD8+ Th1-like cells. These results provide first in vivo evidence implicating that early expansion/differentiation of Vγ2Vδ2 T effector cells during Mtb infection increases resistance to tuberculosis. Thus, data support a rationale for conducting further studies of the γδ T-cell-targeted treatment of established TB, which might ultimately help explore single or adjunctive phosphoantigen expansion of Vγ2Vδ2 T-cell subset as intervention of MDR-tuberculosis or HIV-related tuberculosis
- …
