1,345 research outputs found
Stacking-dependent electronic structure of trilayer graphene resolved by nanospot angle-resolved photoemission spectroscopy
The crystallographic stacking order in multilayer graphene plays an important
role in determining its electronic structure. In trilayer graphene,
rhombohedral stacking (ABC) is particularly intriguing, exhibiting a flat band
with an electric-field tunable band gap. Such electronic structure is distinct
from simple hexagonal stacking (AAA) or typical Bernal stacking (ABA), and is
promising for nanoscale electronics, optoelectronics applications. So far clean
experimental electronic spectra on the first two stackings are missing because
the samples are usually too small in size (um or nm scale) to be resolved by
conventional angle-resolved photoemission spectroscopy (ARPES). Here by using
ARPES with nanospot beam size (NanoARPES), we provide direct experimental
evidence for the coexistence of three different stackings of trilayer graphene
and reveal their distinctive electronic structures directly. By fitting the
experimental data, we provide important experimental band parameters for
describing the electronic structure of trilayer graphene with different
stackings
Second generation Dirac cones and inversion symmetry breaking induced gaps in graphene/hexagonal boron nitride
Graphene/h-BN has emerged as a model van der Waals heterostructure, and the
band structure engineering by the superlattice potential has led to various
novel quantum phenomena including the self-similar Hofstadter butterfly states.
Although newly generated second generation Dirac cones (SDCs) are believed to
be crucial for understanding such intriguing phenomena, so far fundamental
knowledge of SDCs in such heterostructure, e.g. locations and dispersion of
SDCs, the effect of inversion symmetry breaking on the gap opening, still
remains highly debated due to the lack of direct experimental results. Here we
report first direct experimental results on the dispersion of SDCs in 0
aligned graphene/h-BN heterostructure using angle-resolved photoemission
spectroscopy. Our data reveal unambiguously SDCs at the corners of the
superlattice Brillouin zone, and at only one of the two superlattice valleys.
Moreover, gaps of 100 meV and 160 meV are observed at the
SDCs and the original graphene Dirac cone respectively. Our work highlights the
important role of a strong inversion symmetry breaking perturbation potential
in the physics of graphene/h-BN, and fills critical knowledge gaps in the band
structure engineering of Dirac fermions by a superlattice potential.Comment: Nature Physics 2016, In press, Supplementary Information include
Extremely Large Magnetoresistance and Electronic Structure of TmSb
We report the magneto-transport properties and the electronic structure of
TmSb. TmSb exhibits extremely large transverse magnetoresistance and
Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field.
Interestingly, the split of Fermi surfaces induced by the nonsymmetric
spin-orbit interaction has been observed from SdH oscillation. The analysis of
the angle-dependent SdH oscillation illustrates the contribution of each Fermi
surface to the conductivity. The electronic structure revealed by
angle-resolved photoemission spectroscopy (ARPES) and first-principles
calculations demonstrates a gap at point and the absence of band inversion.
Combined with the trivial Berry phase extracted from SdH oscillation and the
nearly equal concentrations of electron and hole from Hall measurements, it is
suggested that TmSb is a topologically trivial semimetal and the observed XMR
originates from the electron-hole compensation and high mobility.Comment: 6 pages, 5 figure
Disorder induced multifractal superconductivity in monolayer niobium dichalcogenides
The interplay between disorder and superconductivity is a subtle and
fascinating phenomenon in quantum many body physics. The conventional
superconductors are insensitive to dilute nonmagnetic impurities, known as the
Anderson's theorem. Destruction of superconductivity and even
superconductor-insulator transitions occur in the regime of strong disorder.
Hence disorder-enhanced superconductivity is rare and has only been observed in
some alloys or granular states. Because of the entanglement of various effects,
the mechanism of enhancement is still under debate. Here we report
well-controlled disorder effect in the recently discovered monolayer NbSe
superconductor. The superconducting transition temperatures of NbSe
monolayers are substantially increased by disorder. Realistic theoretical
modeling shows that the unusual enhancement possibly arises from the
multifractality of electron wave functions. This work provides the first
experimental evidence of the multifractal superconducting state
- …
