37,564 research outputs found

    A pathway-based mean-field model for E. coli chemotaxis: Mathematical derivation and Keller-Segel limit

    Full text link
    A pathway-based mean-field theory (PBMFT) was recently proposed for E. coli chemotaxis in [G. Si, T. Wu, Q. Quyang and Y. Tu, Phys. Rev. Lett., 109 (2012), 048101]. In this paper, we derived a new moment system of PBMFT by using the moment closure technique in kinetic theory under the assumption that the methylation level is locally concentrated. The new system is hyperbolic with linear convection terms. Under certain assumptions, the new system can recover the original model. Especially the assumption on the methylation difference made there can be understood explicitly in this new moment system. We obtain the Keller-Segel limit by taking into account the different physical time scales of tumbling, adaptation and the experimental observations. We also present numerical evidence to show the quantitative agreement of the moment system with the individual based E. coli chemotaxis simulator.Comment: 21 pages, 3 figure

    Quantum critical dynamics for a prototype class of insulating antiferromagnets

    Full text link
    Quantum criticality is a fundamental organizing principle for studying strongly correlated systems. Nevertheless, understanding quantum critical dynamics at nonzero temperatures is a major challenge of condensed matter physics due to the intricate interplay between quantum and thermal fluctuations. The recent experiments in the quantum spin dimer material TlCuCl3_3 provide an unprecedented opportunity to test the theories of quantum criticality. We investigate the nonzero temperature quantum critical spin dynamics by employing an effective O(N)O(N) field theory. The on-shell mass and the damping rate of quantum critical spin excitations as functions of temperature are calculated based on the renormalized coupling strength, which are in excellent agreements with experiment observations. Their TlnTT\ln T dependence is predicted to be dominant at very low temperatures, which is to be tested in future experiments. Our work provides confidence that quantum criticality as a theoretical framework, being considered in so many different contexts of condensed matter physics and beyond, is indeed grounded in materials and experiments accurately. It is also expected to motivate further experimental investigations on the applicability of the field theory to related quantum critical systems.Comment: 9 pages, 7 figure
    corecore