101 research outputs found
Use of near-infrared systems for investigations of hemodynamics in human in vivo bone tissue: a systematic review
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.A range of technologies using near infrared (NIR) light have shown promise at providing real time measurements of hemodynamic markers in bone tissue in vivo, an exciting prospect given existing difficulties in measuring hemodynamics in bone tissue. This systematic review aimed to evaluate the evidence for this potential use of NIR systems, establishing their potential as a research tool in this field. Major electronic databases including MEDLINE and EMBASE were searched using pre‐planned search strategies with broad scope for any in vivo use of NIR technologies in human bone tissue. Following identification of studies by title and abstract screening, full text inclusion was determined by double blind assessment using predefined criteria. Full text studies for inclusion were data extracted using a predesigned proforma and quality assessed. Narrative synthesis was appropriate given the wide heterogeneity of included studies. Eighty‐eight full text studies fulfilled the inclusion criteria, 57 addressing laser Doppler flowmetry (56 intra‐operatively), 21 near infrared spectroscopy, and 10 photoplethysmography. The heterogeneity of the methodologies included differing hemodynamic markers, measurement protocols, anatomical locations, and research applications, making meaningful direct comparisons impossible. Further, studies were often limited by small sample sizes with potential selection biases, detection biases, and wide variability in results between participants. Despite promising potential in the use of NIR light to interrogate bone circulation, the application of NIR systems in bone requires rigorous assessment of the reproducibility of potential hemodynamic markers and further validation of these markers against alternative physiologically relevant reference standards.This systematic review was supported by the College of Radiographers Industry Partnership Scheme (CORIPS) Doctoral Fellowship Grant (Applicant 003). The CORIPS are providing financial support but have no input into the design, performance or analysis of this systematic review.
WDS, FC and CT would like to acknowledge the NIHR Exeter Clinical Research Facility and the NIHR Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR Exeter Clinical Research Facility, the NHS, the NIHR or the Department of Health in England
Proteomic Assessment of Fluid Shifts and Association with Visual Impairment and Intracranial Pressure in Twin Astronauts
BACKGROUND: Astronauts participating in long duration space missions are at an increased risk of physiological disruptions. The development of visual impairment and intracranial pressure (VIIP) syndrome is one of the leading health concerns for crew members on long-duration space missions; microgravity-induced fluid shifts and chronic elevated cabin CO2 may be contributing factors. By studying physiological and molecular changes in one identical twin during his 1-year ISS mission and his ground-based co-twin, this work extends a current NASA-funded investigation to assess space flight induced "Fluid Shifts" in association with the development of VIIP. This twin study uniquely integrates physiological and -omic signatures to further our understanding of the molecular mechanisms underlying space flight-induced VIIP. We are: (i) conducting longitudinal proteomic assessments of plasma to identify fluid regulation-related molecular pathways altered by long-term space flight; and (ii) integrating physiological and proteomic data with genomic data to understand the genomic mechanism by which these proteomic signatures are regulated. PURPOSE: We are exploring proteomic signatures and genomic mechanisms underlying space flight-induced VIIP symptoms with the future goal of developing early biomarkers to detect and monitor the progression of VIIP. This study is first to employ a male monozygous twin pair to systematically determine the impact of fluid distribution in microgravity, integrating a comprehensive set of structural and functional measures with proteomic, metabolomic and genomic data. This project has a broader impact on Earth-based clinical areas, such as traumatic brain injury-induced elevations of intracranial pressure, hydrocephalus, and glaucoma. HYPOTHESIS: We predict that the space-flown twin will experience a space flight-induced alteration in proteins and peptides related to fluid balance, fluid control and brain injury as compared to his pre-flight protein/peptide signatures. Conversely, the trajectory of these protein signatures will remain relatively constant in his ground based co-twin. METHODS: We are using proteomic and standard immunoelectrophoresis techniques to delineate the change in protein signatures throughout the course of a long duration space flight in relation to the development of VIIP. We are also applying a novel cell-based metaboloic organ system assay ("Organs on a Plate") to address how these circulating biomarkers affect physiological processes at the cellular and organ level which could result in VIIP symptoms. These molecular data will be correlated with physiological measures (eg. extra and intracellular fluid volume, vascular filling/flow patterns, MRI, and Optic Coherence Tomography. DISCUSSION: Pre- and in-flight data collection is in progress for the space-flown twin, and similar data have been obtained from the ground-based twin. Biosamples will be batch processed when received from ISS after the conclusion of the 1-year mission. Omic and Physiological measures from the twin astronauts will be compared to similar data being collected on twin subjects who participated in simulated microgravity study. bed rest study
Chick Embryo Partial Ischemia Model: A New Approach to Study Ischemia Ex Vivo
Background: Ischemia is a pathophysiological condition due to blockade in blood supply to a specific tissue thus damaging the physiological activity of the tissue. Different in vivo models are presently available to study ischemia in heart and other tissues. However, no ex vivo ischemia model has been available to date for routine ischemia research and for faster screening of anti-ischemia drugs. In the present study, we took the opportunity to develop an ex vivo model of partial ischemia using the vascular bed of 4th day incubated chick embryo.
Methodology/Principal Findings: Ischemia was created in chick embryo by ligating the right vitelline artery using sterile surgical suture. Hypoxia inducible factor- 1 alpha (HIF-1a), creatine phospho kinase-MB and reactive oxygen species in animal tissues and cells were measured to confirm ischemia in chick embryo. Additionally, ranolazine, N-acetyl cysteine and trimetazidine were administered as an anti-ischemic drug to validate the present model. Results from the present study depicted that blocking blood flow elevates HIF-1a, lipid peroxidation, peroxynitrite level in ischemic vessels while ranolazine administration partially attenuates ischemia driven HIF-1a expression. Endothelial cell incubated on ischemic blood vessels elucidated a higher level of HIF-1a expression with time while ranolazine treatment reduced HIF-1a in ischemic cells. Incubation of caprine heart strip on chick embryo ischemia model depicted an elevated creatine phospho kinase-MB activity under ischemic condition while histology of the treated heart sections evoked edema and disruption of myofibril structures.
Conclusions/Significance: The present study concluded that chick embryo partial ischemia model can be used as a novel ex vivo model of ischemia. Therefore, the present model can be used parallel with the known in vivo ischemia models in understanding the mechanistic insight of ischemia development and in evaluating the activity of anti-ischemic drug.status: publishe
A double-blind, placebo-controlled study evaluating the effects of caffeine and L-theanine both alone and in combination on cerebral blood flow, cognition and mood
Nitric Oxide Reverses the Position of the Heart during Embryonic Development
Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) plays crucial roles in cardiac homeostasis. Adult cardiomyocyte specific overexpression of eNOS confers protection against myocardial-reperfusion injury. However, the global effects of NO overexpression in developing cardiovascular system is still unclear. We hypothesized that nitric oxide overexpression affects the early migration of cardiac progenitor cells, vasculogenesis and function in a chick embryo. Vehicle or nitric oxide donor DEAN (500 µM) were loaded exogenously through a small window on the broad side of freshly laid egg and embryonic development tracked by live video-microscopy. At Hamburg Hamilton (HH) stage 8, the cardiac progenitor cells (CPC) were isolated and cell migration analysed by Boyden Chamber. The vascular bed structure and heart beats were compared between vehicle and DEAN treated embryos. Finally, expression of developmental markers such as BMP4, Shh, Pitx2, Noggin were measured using reverse transcriptase PCR and in-situ hybridization. The results unexpectedly showed that exogenous addition of pharmacological NO between HH stage 7–8 resulted in embryos with situs inversus in 28 out of 100 embryos tested. Embryos treated with NO inhibitor cPTIO did not have situs inversus, however 10 embryos treated with L-arginine showed a situs inversus phenotype. N-acetyl cysteine addition in the presence of NO failed to rescue situs inversus phenotype. The heart beat is normal (120 beats/min) although the vascular bed pattern is altered. Migration of CPCs in DEAN treated embryos is reduced by 60% compared to vehicle. BMP4 protein expression increases on the left side of the embryo compared to vehicle control. The data suggests that the NO levels in the yolk are important in turning of the heart during embryonic development. High levels of NO may lead to situs inversus condition in avian embryo by impairing cardiac progenitor cell migration through the NO-BMP4-cGMP axis
Supplementary figures_JHS_4-10-2022.pdf
Supplementary figures associated with the manuscript titled, "Strain-dependent lung transcriptomic differences in cigarette smoke and LPS models of acute lung injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). The manuscript is under consideration in AJP Lung Cellular and Molecular Biology</p
Figure S3_Module_trait_relationships.pdf
Figure S3. Module trait relationships between modules and experimental variables. The matrix shows the correlation between the module eigengene (akin to a PC1 ‘gene’ for that module) and a trait for each sample in the experiment. The number on the top of each cell is the pearson correlation coefficient (rho) and the number below in each cell is the associated p-value. Correlation magnitude is also shown as a heat component, with high positive correlations having a red color and negative correlations having a green value. r=0 is white. Rows correspond with different modules and columns are the traits that are correlated against the module eigengene (each sample has a trait value and a module eigengene value per module).</p
Supplementary tables_4-12-22.pptx
Supplementary tables associated with the manuscript titled, "Strain-dependent lung transcriptomic differences in cigarette smoke and LPS models of acute lung injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). The manuscript is under consideration by AJP lung cellular and molecular biology.</p
Fig_S2_FULL_SET_INTERACTION_PLOTS (1).pdf
Figure S2. Interaction plots of the top 20 membership genes in each WGCNA module (n=19). Modules are named by their arbitrary color identifier. Each plot shows the scaled expression values across different experimental treatments where both strains can be compared. N.B. the 3- week CS-only or RA-only treatments could not be compared across strains and are not displayed. Each line represents a single gene, and expression values in each treatment are point estimates (means) based on the all the replicates (see Figure 1A). The same 20 genes are used in each strain. Black lines show the AKR strain’s value, whereas the non-black lines represent the C57 strain. The order of treatments along the x-axis are cigarette smoke (CS) – LPS – 3 weeks (CS-LPS), CS- Normal Saline (NS) – 3 weeks (CS-NS), Room Air (RA)- LPS (RA-LPS), RA-NS, and CS-6 weeks (CS), and RA-6 weeks (RA). Crossing strain reaction norms are evidence of strain x treatment interactions. A large number of modules (18/29) demonstrated statistically significant strain x treatment interactions (with FDR<0.05).</p
- …
