82 research outputs found

    Double-blind randomized proof-of-concept trial of canakinumab in patients with COVID-19 associated cardiac injury and heightened inflammation

    Get PDF
    AIMS: In coronavirus disease 2019 (COVID-19), myocardial injury is associated with systemic inflammation and higher mortality. Our aim was to perform a proof of concept trial with canakinumab, a monoclonal antibody to interleukin-1β, in patients with COVID-19, myocardial injury, and heightened inflammation. METHODS AND RESULTS: This trial required hospitalization due to COVID-19, elevated troponin, and a C-reactive protein concentration more than 50 mg/L. The primary endpoint was time to clinical improvement at Day 14, defined as either an improvement of two points on a seven-category ordinal scale or discharge from the hospital. The secondary endpoint was mortality at Day 28. Forty-five patients were randomly assigned to canakinumab 600 mg ( CONCLUSION: There was no difference in time to clinical improvement at Day 14 in patients treated with canakinumab, and no safety concerns were identified. Future studies could focus on high dose canakinumab in the treatment arm and assess efficacy outcomes at Day 28

    Best Practices for Point of Care Ultrasound: An Interdisciplinary Expert Consensus

    Get PDF
    Despite the growing use of point of care ultrasound (POCUS) in contemporary medical practice and the existence of clinical guidelines addressing its specific applications, there remains a lack of standardization and agreement on optimal practices for several areas of POCUS use. The Society of Point of Care Ultrasound (SPOCUS) formed a working group in 2022 to establish a set of recommended best practices for POCUS, applicable to clinicians regardless of their training, specialty, resource setting, or scope of practice. Using a three-round modified Delphi process, a multi-disciplinary panel of 22 POCUS experts based in the United States reached consensus on 57 statements in domains including: (1) The definition and clinical role of POCUS; (2) Training pathways; (3) Credentialing; (4) Cleaning and maintenance of POCUS devices; (5) Consent and education; (6) Security, storage, and sharing of POCUS studies; (7) Uploading, archiving, and reviewing POCUS studies; and (8) Documenting POCUS studies. The consensus statements are provided here. While not intended to establish a standard of care or supersede more targeted guidelines, this document may serve as a useful baseline to guide clinicians, leaders, and systems considering initiation or enhancement of POCUS programs

    The Discover In-Hospital Cardiac Arrest (Discover IHCA) Study: An Investigation of Hospital Practices After In-Hospital Cardiac Arrest

    Get PDF
    IMPORTANCE: In-hospital cardiac arrest (IHCA) is a significant public health burden. Rates of return of spontaneous circulation (ROSC) have been improving, but the best way to care for patients after the initial resuscitation remains poorly understood, and improvements in survival to discharge are stagnant. Existing North American cardiac arrest databases lack comprehensive data on the post-resuscitation period, and we do not know current post-IHCA practice patterns. To address this gap, we developed the Discover In-Hospital Cardiac Arrest (Discover IHCA) study, which will thoroughly evaluate current post-IHCA care practices across a diverse cohort. OBJECTIVES: Our study collects granular data on post-IHCA treatment practices, focusing on temperature control and prognostication, with the objective of describing variation in current post-IHCA practice. DESIGN, SETTING, AND PARTICIPANTS: This is a multicenter, prospectively collected, observational cohort study of patients who have suffered IHCA and have been successfully resuscitated (achieved ROSC). There are 24 enrolling hospital systems (23 in the United States) with 69 individual enrolling hospitals (39 in the United States). We developed a standardized data dictionary, and data collection began in October 2023, with a projected 1000 total enrollments. Discover IHCA is endorsed by the Society of Critical Care Medicine. INTERVENTIONS, OUTCOMES, AND ANALYSIS: The study collects data on patient characteristics including pre-arrest frailty, arrest characteristics, and detailed information on post-arrest practices and outcomes. Data collection on post-IHCA practice was structured around current American Heart Association and European Resuscitation Council guidelines. Among other data elements, the study captures post-arrest temperature control interventions and post-arrest prognostication methods. Analysis will evaluate variations in practice and their association with mortality and neurologic function. CONCLUSIONS: We expect this study, Discover IHCA, to identify variability in practice and outcomes following IHCA, and be a vital resource for future investigations into best-practice for managing patients after IHCA

    The Discover In-Hospital Cardiac Arrest (Discover IHCA) Study: An Investigation of Hospital Practices After In-Hospital Cardiac Arrest

    Get PDF
    IMPORTANCE: In-hospital cardiac arrest (IHCA) is a significant public health burden. Rates of return of spontaneous circulation (ROSC) have been improving, but the best way to care for patients after the initial resuscitation remains poorly understood, and improvements in survival to discharge are stagnant. Existing North American cardiac arrest databases lack comprehensive data on the post-resuscitation period, and we do not know current post-IHCA practice patterns. To address this gap, we developed the Discover In-Hospital Cardiac Arrest (Discover IHCA) study, which will thoroughly evaluate current post-IHCA care practices across a diverse cohort. OBJECTIVES: Our study collects granular data on post-IHCA treatment practices, focusing on temperature control and prognostication, with the objective of describing variation in current post-IHCA practice. DESIGN, SETTING, AND PARTICIPANTS: This is a multicenter, prospectively collected, observational cohort study of patients who have suffered IHCA and have been successfully resuscitated (achieved ROSC). There are 24 enrolling hospital systems (23 in the United States) with 69 individual enrolling hospitals (39 in the United States). We developed a standardized data dictionary, and data collection began in October 2023, with a projected 1000 total enrollments. Discover IHCA is endorsed by the Society of Critical Care Medicine. INTERVENTIONS, OUTCOMES, AND ANALYSIS: The study collects data on patient characteristics including pre-arrest frailty, arrest characteristics, and detailed information on post-arrest practices and outcomes. Data collection on post-IHCA practice was structured around current American Heart Association and European Resuscitation Council guidelines. Among other data elements, the study captures post-arrest temperature control interventions and post-arrest prognostication methods. Analysis will evaluate variations in practice and their association with mortality and neurologic function. CONCLUSIONS: We expect this study, Discover IHCA, to identify variability in practice and outcomes following IHCA, and be a vital resource for future investigations into best-practice for managing patients after IHCA
    corecore