514 research outputs found
Quantum states and specific heat of low-density He gas adsorbed within the carbon nanotube interstitial channels: Band structure effects and potential dependence
We calculate the energy-band structure of a He atom trapped within the
interstitial channel between close-packed nanotubes within a bundle and its
influence on the specific heat of the adsorbed gas. A robust prediction of our
calculations is that the contribution of the low-density adsorbed gas to the
specific heat of the nanotube material shows pronounced nonmonotonic variations
with temperature. These variations are shown to be closely related to the band
gaps in the adsorbate density of states
Recommended from our members
Large-Scale Electrochemical Degradation of Poly-and Perfluoroalkyl Substances (PFAS) by Magnéli Ti4O7 Electrodes
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that are extremely persistent in the environment. They classified as emerging contaminants and have been linked to impacts on the developmental, liver, immune, and thyroid systems, and are possible carcinogens. PFAS’ resistance to biodegradation and conventional oxidation processes make them one of the hardest chemicals to remove from water. With the discovery of PFAS in public water supplies, existing technologies are not capable of removing these recalcitrant contaminants to levels expected for the health of the public. Even in cases when conventional technologies can remove PFAS compounds, removal is often the separation of the contaminants from water to another phase for further treatment. Electrochemical treatment has been shown to not just transfer PFAS to other phases, but to destroy these compounds. These electrochemical systems have emerged as a novel water treatment technology which has been performed at both bench-scale and pilot-scale. This study explored the degradation of six of the most commonly regulated PFAS compounds on a scale that could be used in industrial applications. Two designs of Magnéli phase Ti4O7 anodes, solid and microporous which differ in flow pattern, were tested. These reactors were evaluated for the ability to destroy individual PFAS compounds at two voltages, two amperages, and with the addition of sodium sulfate to the base conductivity of sodium chloride. Previous Aclarity research designated the settings that were tested. The reactors were not capable of removing shorter-chain compounds, such as PFOA, PFHpA, and PFHxS, likely due to the hydrophilic functional groups. While PFOS, PFNA, and PFDA were easily removed due to their hydrophobic functional groups. The reactors removed the most contaminants at higher voltages and amperages. Further investigation is required to remove short-chain compounds with this large-scale reactor and to make the system more energy efficient
Four-dimensional Cone Beam CT Reconstruction and Enhancement using a Temporal Non-Local Means Method
Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed
to provide respiratory phase resolved volumetric imaging in image guided
radiation therapy (IGRT). Inadequate number of projections in each phase bin
results in low quality 4D-CBCT images with obvious streaking artifacts. In this
work, we propose two novel 4D-CBCT algorithms: an iterative reconstruction
algorithm and an enhancement algorithm, utilizing a temporal nonlocal means
(TNLM) method. We define a TNLM energy term for a given set of 4D-CBCT images.
Minimization of this term favors those 4D-CBCT images such that any anatomical
features at one spatial point at one phase can be found in a nearby spatial
point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a
total energy containing a data fidelity term and the TNLM energy term. As for
the image enhancement, 4D-CBCT images generated by the FDK algorithm are
enhanced by minimizing the TNLM function while keeping the enhanced images
close to the FDK results. A forward-backward splitting algorithm and a
Gauss-Jacobi iteration method are employed to solve the problems. The
algorithms are implemented on GPU to achieve a high computational efficiency.
The reconstruction algorithm and the enhancement algorithm generate visually
similar 4D-CBCT images, both better than the FDK results. Quantitative
evaluations indicate that, compared with the FDK results, our reconstruction
method improves contrast-to-noise-ratio (CNR) by a factor of 2.56~3.13 and our
enhancement method increases the CNR by 2.75~3.33 times. The enhancement method
also removes over 80% of the streak artifacts from the FDK results. The total
computation time is ~460 sec for the reconstruction algorithm and ~610 sec for
the enhancement algorithm on an NVIDIA Tesla C1060 GPU card.Comment: 20 pages, 3 figures, 2 table
Ecology and energetics of early life stages of walleye pollock in the eastern Bering Sea: the role of spatial variability across climatic regimes
Understanding mechanisms behind variability in early life survival of marine fishes can improve predictive capabilities for recruitment success under changing climate conditions. Ecosystem changes in response to climate variability in the eastern Bering Sea affect commercial species including walleye pollock (Theragra chalcogramma), which represent an ecologically important component of the ecosystem and support the largest commercial fishery in the United States. The goal of my dissertation was to better understand spatial and temporal dynamics in the ecology of early life stages of walleye pollock in the eastern Bering Sea through: (1) an examination of shifts in larval fish community composition in response to environmental variability across both warm and cold conditions; (2) a quantification of the seasonal progression in energy content of age-0 walleye pollock which provides critical information for predicting overwinter survival and recruitment to age-1 because age-0 walleye pollock rely on sufficient energy reserves to survive their first winter; and (3) a modeling approach to better understand the role of prey quality, prey composition, and water temperature on spatial and temporal patterns of juvenile walleye pollock growth with implications for year-class survival and recruitment success. In the community analysis, I identified a strong cross-shelf gradient delineating slope and shelf assemblages, an influence of water masses from the Gulf of Alaska on species composition, and the importance of nearshore areas for larval fish. Species assemblages differed between warm and cold periods, and larval abundances, including that of walleye pollock, were generally greater in warm years. I identified different energy allocation strategies indicating that distinct ontogenetic stages face different survival constraints. Larval walleye pollock favored allocation to somatic growth, presumably to escape size-dependent predation, while juveniles allocated energy to lipid storage in late summer. Finally, I provide evidence that a spatial mismatch between juvenile walleye pollock and growth 'hot spots' in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. I highlight the importance of climate-driven spatial patterns in community structure, prey dynamics, and environmental conditions that influence the growth and survival of an important gadoid population in a sub-arctic marine ecosystem.General introduction -- Chapter 1: Community-level response of larval fish to environmental variability in the southeastern Bering Sea -- Chapter 2: Conceptual model of energy allocation in walleye pollock (Theragra chalcogramma) from age-0 to age-1 in the southeastern Bering Sea -- Chapter 3: Spatial match-mismatch between juvenile fish and prey explains recruitment variability across contrasting climate conditions in the eastern Bering Sea
3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy
Recently we have developed an algorithm for reconstructing volumetric images
and extracting 3D tumor motion information from a single x-ray projection. We
have demonstrated its feasibility using a digital respiratory phantom with
regular breathing patterns. In this work, we present a detailed description and
a comprehensive evaluation of the improved algorithm. The algorithm was
improved by incorporating respiratory motion prediction. The accuracy and
efficiency were then evaluated on 1) a digital respiratory phantom, 2) a
physical respiratory phantom, and 3) five lung cancer patients. These
evaluation cases include both regular and irregular breathing patterns that are
different from the training dataset. For the digital respiratory phantom with
regular and irregular breathing, the average 3D tumor localization error is
less than 1 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time
for 3D tumor localization from each projection ranges between 0.19 and 0.26
seconds, for both regular and irregular breathing, which is about a 10%
improvement over previously reported results. For the physical respiratory
phantom, an average tumor localization error below 1 mm was achieved with an
average computation time of 0.13 and 0.16 seconds on the same GPU card, for
regular and irregular breathing, respectively. For the five lung cancer
patients, the average tumor localization error is below 2 mm in both the axial
and tangential directions. The average computation time on the same GPU card
ranges between 0.26 and 0.34 seconds
Quantum virial expansion approach to thermodynamics of He adsorbates in carbon nanotube materials: Interacting Bose gas in one dimension
I demonstrate that He adsorbates in carbon nanotube materials can be
treated as one-dimensional interacting gas of spinless bosons for temperatures
below 8 K and for coverages such that all the adsorbates are in the groove
positions of the carbon nanotube bundles. The effects of adsorbate-adsorbate
interactions are studied within the scheme of virial expansion approach. The
theoretical predictions for the specific heat of the interacting adsorbed gas
are given.Comment: 5 PS figure
Systematic model behavior of adsorption on flat surfaces
A low density film on a flat surface is described by an expansion involving
the first four virial coefficients. The first coefficient (alone) yields the
Henry's law regime, while the next three correct for the effects of
interactions. The results permit exploration of the idea of universal
adsorption behavior, which is compared with experimental data for a number of
systems
Ionization degree of the electron-hole plasma in semiconductor quantum wells
The degree of ionization of a nondegenerate two-dimensional electron-hole
plasma is calculated using the modified law of mass action, which takes into
account all bound and unbound states in a screened Coulomb potential.
Application of the variable phase method to this potential allows us to treat
scattering and bound states on the same footing. Inclusion of the scattering
states leads to a strong deviation from the standard law of mass action. A
qualitative difference between mid- and wide-gap semiconductors is
demonstrated. For wide-gap semiconductors at room temperature, when the bare
exciton binding energy is of the order of T, the equilibrium consists of an
almost equal mixture of correlated electron-hole pairs and uncorrelated free
carriers.Comment: 22 pages, 6 figure
Levinson's theorem and scattering phase shift contributions to the partition function of interacting gases in two dimensions
We consider scattering state contributions to the partition function of a
two-dimensional (2D) plasma in addition to the bound-state sum. A partition
function continuity requirement is used to provide a statistical mechanical
heuristic proof of Levinson's theorem in two dimensions. We show that a proper
account of scattering eliminates singularities in thermodynamic properties of
the nonideal 2D gas caused by the emergence of additional bound states as the
strength of an attractive potential is increased. The bound-state contribution
to the partition function of the 2D gas, with a weak short-range attraction
between its particles, is found to vanish logarithmically as the binding energy
decreases. A consistent treatment of bound and scattering states in a screened
Coulomb potential allowed us to calculate the quantum-mechanical second virial
coefficient of the dilute 2D electron-hole plasma and to establish the
difference between the nearly ideal electron-hole gas in GaAs and the strongly
correlated exciton/free-carrier plasma in wide-gap semiconductors such as ZnSe
or GaN.Comment: 10 pages, 3 figures; new version corrects some minor typo
- …
