338 research outputs found
Cluster: Mission Overview and End-of-Life Analysis
The Cluster mission is part of the scientific programme of the European Space Agency (ESA) and its purpose is the analysis of the Earth's magnetosphere. The Cluster project consists of four satellites. The selected polar orbit has a shape of 4.0 and 19.2 Re which is required for performing measurements near the cusp and the tail of the magnetosphere. When crossing these regions the satellites form a constellation which in most of the cases so far has been a regular tetrahedron. The satellite operations are carried out by the European Space Operations Centre (ESOC) at Darmstadt, Germany. The paper outlines the future orbit evolution and the envisaged operations from a Flight Dynamics point of view. In addition a brief summary of the LEOP and routine operations is included beforehand
Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques
The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)
Black strings in AdS_5
We present non-extremal magnetic black string solutions in five-dimensional
gauged supergravity. The conformal infinity is the product of time and S^1xS_h,
where S_h denotes a compact Riemann surface of genus h. The construction is
based on both analytical and numerical techniques. We compute the holographic
stress tensor, the Euclidean action and the conserved charges of the solutions
and show that the latter satisfy a Smarr-type formula. The phase structure is
determined in the canonical ensemble, and it is shown that there is a first
order phase transition from small to large black strings, which disappears
above a certain critical magnetic charge that is obtained numerically. For
another particular value of the magnetic charge, that corresponds to a twisting
of the dual super Yang-Mills theory, the conformal anomalies coming from the
background curvature and those arising from the coupling to external gauge
fields exactly cancel. We also obtain supersymmetric solutions describing waves
propagating on extremal BPS magnetic black strings, and show that they possess
a Siklos-Virasoro reparametrization invariance.Comment: 40 pages, 7 figures, JHEP3. v2: minor corrections, 2 references
added. v3: typos in holographic stress tensor corrected, 3 references adde
Intersecting Flavor Branes
We consider an instance of the AdS/CFT duality where the bulk theory contains
an open string tachyon, and study the instability from the viewpoint of the
boundary field theory. We focus on the specific example of the AdS_5 X S^5
background with two probe D7 branes intersecting at general angles. For generic
angles supersymmetry is completely broken and there is an open string tachyon
between the branes. The field theory action for this system is obtained by
coupling to N =4 super Yang-Mills two N =2 hyper multiplets in the fundamental
representation of the SU(N) gauge group, but with different choices of
embedding of the two N=2 subalgebras into N=4. On the field theory side we find
a one-loop Coleman-Weinberg instability in the effective potential for the
fundamental scalars. We identify a mesonic operator as the dual of the open
string tachyon. By AdS/CFT, we predict the tachyon mass for small 't Hooft
coupling (large bulk curvature) and confirm that it violates the AdS stability
bound.Comment: 36 page
Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques
The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)
FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells
Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours
Adding flavour to the Polchinski-Strassler background
As an extension of holography with flavour, we analyze in detail the
embedding of a D7-brane probe into the Polchinski-Strassler gravity background,
in which the breaking of conformal symmetry is induced by a 3-form flux G_3.
This corresponds to giving masses to the adjoint chiral multiplets. We consider
the N=2 supersymmetric case in which one of the adjoint chiral multiplets is
kept massless while the masses of the other two are equal. This setup requires
a generalization of the known expressions for the backreaction of G_3 in the
case of three equal masses to generic mass values. We work to second order in
the masses to obtain the embedding of D7-brane probes in the background. At
this order, the 2-form potentials corresponding to the background flux induce
an 8-form potential which couples to the worldvolume of the D7-branes. We show
that the embeddings preserve an SU(2) x SU(2) symmetry. We study possible
embeddings both analytically in a particular approximation, as well as
numerically. The embeddings preserve supersymmetry, as we investigate using the
approach of holographic renormalization. The meson spectrum associated to one
of the embeddings found reflects the presence of the adjoint masses by
displaying a mass gap.Comment: LaTeX, 50 pages, 9 figure
Mesons in marginally deformed AdS/CFT
We study the embedding of spacetime filling D7-branes in beta-deformed
backgrounds which, according to the AdS/CFT dictionary, corresponds to
flavoring beta-deformed N=4 super Yang-Mills. We consider supersymmetric and
more general non-supersymmetric three parameter deformations. The equations of
motion for quadratic fluctuations of a probe D7-brane wrapped on a deformed
three-sphere exhibit a non-trivial coupling between scalar and vector modes
induced by the deformation. Nevertheless, we manage to solve them analytically
and find that the mesonic mass spectrum is discrete, with a mass gap and a
Zeeman-like splitting occurs. Finally we propose the action for the dual field
theory as obtained by star-product deformation of super Yang-Mills with
fundamental matter.Comment: LaTex, 42 pages, 3 figures, uses JHEP
Six-Loop Anomalous Dimension of Twist-Three Operators in N=4 SYM
The result for the six-loop anomalous dimension of twist-three operators in
the planar N=4 SYM theory is presented. The calculations were performed along
the paper arXiv:0912.1624. This result provides a new data for testing the
proposed spectral equations for planar AdS/CFT correspondence.Comment: 19 pages, typos corrected, details adde
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
- …
