622 research outputs found
Cosmological Density and Power Spectrum from Peculiar Velocities: Nonlinear Corrections and PCA
We allow for nonlinear effects in the likelihood analysis of galaxy peculiar
velocities, and obtain ~35%-lower values for the cosmological density parameter
Om and the amplitude of mass-density fluctuations. The power spectrum in the
linear regime is assumed to be a flat LCDM model (h=0.65, n=1, COBE) with only
Om as a free parameter. Since the likelihood is driven by the nonlinear regime,
we "break" the power spectrum at k_b=0.2 h/Mpc and fit a power law at k>k_b.
This allows for independent matching of the nonlinear behavior and an unbiased
fit in the linear regime. The analysis assumes Gaussian fluctuations and
errors, and a linear relation between velocity and density. Tests using proper
mock catalogs demonstrate a reduced bias and a better fit. We find for the
Mark3 and SFI data Om_m=0.32+-0.06 and 0.37+-0.09 respectively, with
sigma_8*Om^0.6 = 0.49+-0.06 and 0.63+-0.08, in agreement with constraints from
other data. The quoted 90% errors include cosmic variance. The improvement in
likelihood due to the nonlinear correction is very significant for Mark3 and
moderately so for SFI. When allowing deviations from LCDM, we find an
indication for a wiggle in the power spectrum: an excess near k=0.05 and a
deficiency at k=0.1 (cold flow). This may be related to the wiggle seen in the
power spectrum from redshift surveys and the second peak in the CMB anisotropy.
A chi^2 test applied to modes of a Principal Component Analysis (PCA) shows
that the nonlinear procedure improves the goodness of fit and reduces a spatial
gradient of concern in the linear analysis. The PCA allows addressing spatial
features of the data and fine-tuning the theoretical and error models. It shows
that the models used are appropriate for the cosmological parameter estimation
performed. We address the potential for optimal data compression using PCA.Comment: 18 pages, LaTex, uses emulateapj.sty, ApJ in press (August 10, 2001),
improvements to text and figures, updated reference
A finite model of two-dimensional ideal hydrodynamics
A finite-dimensional su() Lie algebra equation is discussed that in the
infinite limit (giving the area preserving diffeomorphism group) tends to
the two-dimensional, inviscid vorticity equation on the torus. The equation is
numerically integrated, for various values of , and the time evolution of an
(interpolated) stream function is compared with that obtained from a simple
mode truncation of the continuum equation. The time averaged vorticity moments
and correlation functions are compared with canonical ensemble averages.Comment: (25 p., 7 figures, not included. MUTP/92/1
Nonlinear Peculiar-Velocity Analysis and PCA
We allow for nonlinear effects in the likelihood analysis of peculiar
velocities, and obtain ~35%-lower values for the cosmological density parameter
and for the amplitude of mass-density fluctuations. The power spectrum in the
linear regime is assumed to be of the flat LCDM model (h=0.65, n=1) with only
Om_m free. Since the likelihood is driven by the nonlinear regime, we "break"
the power spectrum at k_b=0.2 h/Mpc and fit a two-parameter power-law at k>k_b.
This allows for an unbiased fit in the linear regime. Tests using improved mock
catalogs demonstrate a reduced bias and a better fit. We find for the Mark III
and SFI data Om_m=0.35+-0.09$ with sigma_8*Om_m^0.6=0.55+-0.10 (90% errors).
When allowing deviations from \lcdm, we find an indication for a wiggle in the
power spectrum in the form of an excess near k~0.05 and a deficiency at k~0.1
h/Mpc --- a "cold flow" which may be related to a feature indicated from
redshift surveys and the second peak in the CMB anisotropy. A chi^2 test
applied to principal modes demonstrates that the nonlinear procedure improves
the goodness of fit. The Principal Component Analysis (PCA) helps identifying
spatial features of the data and fine-tuning the theoretical and error models.
We address the potential for optimal data compression using PCA.Comment: 15 pages, LaTex, in Mining the Sky, July 31 - August 4, 2000,
Garching, German
Hydraulics of skimming flows on stepped chutes: The effects of inflow conditions?
Modern stepped spillways are typically designed for large discharge capacities corresponding to a skimming flow regime for which flow resistance is predominantly form drag. The writer demonstrates that the inflow conditions have some effect on the skimming flow properties. Boundary layer calculations show that the flow properties at inception of free-surface aeration are substantially different with pressurized intake. The re-analysis of experimental results highlights that the equivalent Darcy friction factor is f similar to 0.2 in average on uncontrolled stepped Chute and f similar to 0.1 on stepped chute with pressurized intake. A simple design chart is presented to estimate the residual flow velocity, and the agreement of the calculations with experimental results is deemed satisfactory for preliminary design
Effect of Saddle height on skin temperature measured in different days of cycling.
Infrared thermography can be useful to explore the effects of exercise on neuromuscular function. During cycling, it could be used to investigate the effects of saddle height on thermoregulation. The aim of this study was to examine whether different cycling postures, elicited by different knee flexion angles, could influence skin temperature. Furthermore, we also determined whether the reproducibility of thermal measurements in response to cycling differed in the body regions affected or not affected by saddle height. Sixteen cyclists participated in three tests of 45 min of cycling at their individual 50 % peak power output. Each test was performed in a different knee flexion position on the bicycle (20°, 30°, 40° knee flexion when the pedal crank was at 180°). Different knee angles were obtained by changing saddle height. Skin temperatures were determined by infrared thermography before, immediately after and 10 min after the cycling test, in 16 different regions of interest (ROI) in the trunk and lower limbs. Changes in saddle height did not result in changes in skin temperature in the ROI. However, lower knee flexion elicited higher temperature in popliteus after cycling than higher flexion (p = 0.008 and ES = 0.8), and higher knee flexion elicited lower temperature variation in the tibialis anterior than intermediate knee flexion (p = 0.004 and ES = 0.8). Absolute temperatures obtained good and very good intraday reproducibility in the different measurements (ICCs between 0.44 and 0.85), but temperature variations showed lower reproducibility (ICCs between 0.11 and 0.74). Different postures assumed by the cyclist due to different saddle height did not influence temperature measurements. Skin temperature can be measured on different days with good repeatability, but temperature variations can be more sensitive to the effects of an intervention
Astronomy for Students with Visual Impairments: Development of the Career Exploration Lab
For students with visual impairments (VI), the possibility of a future in astronomy, or any science, technology, engineering, and mathematics (STEM) field, seems daunting. In order to bolster astronomy and STEM opportunities for high school students with VI in the United States, we developed the STEM Career Exploration Lab (CEL). Our STEM CEL methodology employs tactile astronomy instruction via 3D printing technologies and unique 3D-printed models, professionals with VI acting as role models, and partnerships with local STEM industries that provide insights into possible career paths. In partnership with the South Carolina Commission for the Blind (SCCB) and the Michigan Bureau of Services for Blind Persons (MBSBP), to date we have held four weeklong CELs (June 2017, June & July 2018, August 2019) and a 3D printer build workshop (September 2018), thus far serving about fifty students with VI. We have also held one professional development workshop for teachers of the visually impaired at the Maryland School for the Blind in October 2021. We gathered pre- and post-intervention data via student surveys, assessments of students\u27 astronomy knowledge, and video recordings of the CEL activities in order to study to what extent the CEL model can enhance the students\u27 attitudes towards, interests in, and capacities to participate in astronomy and STEM careers. Once fully tested and refined, we will make our 3D model files and activities freely available for further use and study. This work serves as a testbed for an expanded CEL program aimed at helping increase the representation of persons with VI in astronomy and STEM fields. This work is supported by a generous Innovative Technology Experiences for Students and Teachers (ITEST) grant from the National Science Foundation
Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies
The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes
Associative3D: Volumetric Reconstruction from Sparse Views
This paper studies the problem of 3D volumetric reconstruction from two views
of a scene with an unknown camera. While seemingly easy for humans, this
problem poses many challenges for computers since it requires simultaneously
reconstructing objects in the two views while also figuring out their
relationship. We propose a new approach that estimates reconstructions,
distributions over the camera/object and camera/camera transformations, as well
as an inter-view object affinity matrix. This information is then jointly
reasoned over to produce the most likely explanation of the scene. We train and
test our approach on a dataset of indoor scenes, and rigorously evaluate the
merits of our joint reasoning approach. Our experiments show that it is able to
recover reasonable scenes from sparse views, while the problem is still
challenging. Project site: https://jasonqsy.github.io/Associative3DComment: ECCV 202
- …
