533 research outputs found
Quantum kinetic theory of the filamentation instability
The quantum electromagnetic dielectric tensor for a multi species plasma is
re-derived from the gauge invariant Wigner-Maxwell system and presented under a
form very similar to the classical one. The resulting expression is then
applied to a quantum kinetic theory of the electromagnetic filamentation
instability. Comparison is made with the quantum fluid theory including a Bohm
pressure term, and with the cold classical plasma result. A number of
analytical expressions are derived for the cutoff wave vector, the largest
growth rate and the most unstable wave vector
Harmonics generation in electron-ion collisions in a short laser pulse
Anomalously high generation efficiency of coherent higher field-harmonics in
collisions between {\em oppositely charged particles} in the field of
femtosecond lasers is predicted. This is based on rigorous numerical solutions
of a quantum kinetic equation for dense laser plasmas which overcomes
limitations of previous investigations.Comment: 4 pages, 4 eps-figures include
Robustness of a local Fermi Liquid against Ferromagnetism and Phase Separation
We study the properties of Fermi Liquids with the microscopic constraint of a
local self-energy. In this case the forward scattering sum-rule imposes strong
limitations on the Fermi-Liquid parameters, which rule out any Pomeranchek
instabilities. For both attractive and repulsive interactions, ferromagnetism
and phase separation are suppressed. Superconductivity is possible in an s-wave
channel only. We also study the approach to the metal-insulator transition, and
find a Wilson ratio approaching 2. This ratio and other properties of
Sr_{1-x}La_xTiO_3 are all consistent with the local Fermi Liquid scenario.Comment: 4 pages (twocolumn format), can compile with or without epsf.sty
latex style file -- Postscript files: fig1.ps and fig2.p
Comment on ``Damping of energetic gluons and quarks in high-temperature QCD''
Burgess and Marini have recently pointed out that the leading contribution to
the damping rate of energetic gluons and quarks in the QCD plasma, given by
, can be obtained by simple arguments obviating the need
of a fully resummed perturbation theory as developed by Braaten and Pisarski.
Their calculation confirmed previous results of Braaten and Pisarski, but
contradicted those proposed by Lebedev and Smilga. While agreeing with the
general considerations made by Burgess and Marini, I correct their actual
calculation of the damping rates, which is based on a wrong expression for the
static limit of the resummed gluon propagator. The effect of this, however,
turns out to be cancelled fortuitously by another mistake, so as to leave all
of their conclusions unchanged. I also verify the gauge independence of the
results, which in the corrected calculation arises in a less obvious manner.Comment: 5 page
Kramers-Kronig Relations For The Dielectric Function And The Static Conductivity Of Coulomb Systems
The mutual influence of singularities of the dielectric permittivity e(q,w)
in a Coulomb system in two limiting cases w tends to zero, q tends to zero, and
opposite q tends to zero, w tends to zero is established. It is shown that the
dielectric permittivity e(q,w) satisfies the Kramers-Kronig relations, which
possesses the singularity due to a finite value of the static conductivity.
This singularity is associated with the long "tails" of the time correlation
functions.Comment: 9 pages, 0 figure
Linear theory of nonlocal transport in a magnetized plasma
A system of nonlocal electron-transport equations for small perturbations in
a magnetized plasma is derived using the systematic closure procedure of V. Yu.
Bychenkov et al., Phys. Rev. Lett. 75, 4405 (1995). Solution to the linearized
kinetic equation with a Landau collision operator is obtained in the diffusive
approximation. The Fourier components of the longitudinal, oblique, and
transversal electron fluxes are found in an explicit form for quasistatic
conditions in terms of the generalized forces: the gradients of density and
temperature, and the electric field. The full set of nonlocal transport
coefficients is given and discussed. Nonlocality of transport enhances electron
fluxes across magnetic field above the values given by strongly collisional
local theory. Dispersion and damping of magnetohydrodynamic waves in weakly
collisional plasmas is discussed. Nonlocal transport theory is applied to the
problem of temperature relaxation across the magnetic field in a laser hot
spot.Comment: 27 pages, 13 figure
Thermodynamic properties and electrical conductivity of strongly correlated plasma media
We study thermodynamic properties and the electrical conductivity of dense
hydrogen and deuterium using three methods: classical reactive Monte Carlo
(REMC), direct path integral Monte Carlo (PIMC) and a quantum dynamics method
in the Wigner representation of quantum mechanics. We report the calculation of
the deuterium compression quasi-isentrope in good agreement with experiments.
We also solve the Wigner-Liouville equation of dense degenerate hydrogen
calculating the initial equilibrium state by the PIMC method. The obtained
particle trajectories determine the momentum-momentum correlation functions and
the electrical conductivity and are compared with available theories and
simulations
Damping rates for moving particles in hot QCD
Using a program of perturbative resummation I compute the damping rates for
fields at nonzero spatial momentum to leading order in weak coupling in hot
. Sum rules for spectral densities are used to simplify the calculations.
For massless fields the damping rate has an apparent logarithmic divergence in
the infrared limit, which is cut off by the screening of static magnetic fields
(``magnetic mass''). This demonstrates how at high temperature even
perturbative quantities are sensitive to nonperturbative phenomenon.Comment: LaTeX file, 24 pages, BNL-P-1/92 (December, 1992
The Quark-Gluon-Plasma Liquid
The quark-gluon plasma close to the critical temperature is a strongly
interacting system. Using strongly coupled, classical, non-relativistic plasmas
as an analogy, we argue that the quark-gluon plasma is in the liquid phase.
This allows to understand experimental observations in ultrarelativistic
heavy-ion collisions and to interpret lattice QCD results. It also supports the
indications of the presence of a strongly coupled QGP in ultrarelativistic
heavy-ion collisions.Comment: 8 pages, 2 figures, final version, to bepublished in J. Phys.
High Temperature Response Functions and the Non-Abelian Kubo Formula
We describe the relationship between time-ordered and retarded response
functions in a plasma. We obtain an expression, including the proper
-prescription, for the induced current due to hard thermal loops in
a non-Abelian theory, thus giving the non-Abelian generalization of the Kubo
formula. The result is closely related to the eikonal for a Chern-Simons theory
and is relevant for a gauge-invariant description of Landau damping in the
quark-gluon plasma at high temperature.Comment: 14 pages in LaTeX, MIT CTP #2205 and CU-TP #59
- …
