533 research outputs found

    Quantum kinetic theory of the filamentation instability

    Full text link
    The quantum electromagnetic dielectric tensor for a multi species plasma is re-derived from the gauge invariant Wigner-Maxwell system and presented under a form very similar to the classical one. The resulting expression is then applied to a quantum kinetic theory of the electromagnetic filamentation instability. Comparison is made with the quantum fluid theory including a Bohm pressure term, and with the cold classical plasma result. A number of analytical expressions are derived for the cutoff wave vector, the largest growth rate and the most unstable wave vector

    Harmonics generation in electron-ion collisions in a short laser pulse

    Full text link
    Anomalously high generation efficiency of coherent higher field-harmonics in collisions between {\em oppositely charged particles} in the field of femtosecond lasers is predicted. This is based on rigorous numerical solutions of a quantum kinetic equation for dense laser plasmas which overcomes limitations of previous investigations.Comment: 4 pages, 4 eps-figures include

    Robustness of a local Fermi Liquid against Ferromagnetism and Phase Separation

    Full text link
    We study the properties of Fermi Liquids with the microscopic constraint of a local self-energy. In this case the forward scattering sum-rule imposes strong limitations on the Fermi-Liquid parameters, which rule out any Pomeranchek instabilities. For both attractive and repulsive interactions, ferromagnetism and phase separation are suppressed. Superconductivity is possible in an s-wave channel only. We also study the approach to the metal-insulator transition, and find a Wilson ratio approaching 2. This ratio and other properties of Sr_{1-x}La_xTiO_3 are all consistent with the local Fermi Liquid scenario.Comment: 4 pages (twocolumn format), can compile with or without epsf.sty latex style file -- Postscript files: fig1.ps and fig2.p

    Comment on ``Damping of energetic gluons and quarks in high-temperature QCD''

    Full text link
    Burgess and Marini have recently pointed out that the leading contribution to the damping rate of energetic gluons and quarks in the QCD plasma, given by γ=cg2ln(1/g)T\gamma=c g^2\ln(1/g)T, can be obtained by simple arguments obviating the need of a fully resummed perturbation theory as developed by Braaten and Pisarski. Their calculation confirmed previous results of Braaten and Pisarski, but contradicted those proposed by Lebedev and Smilga. While agreeing with the general considerations made by Burgess and Marini, I correct their actual calculation of the damping rates, which is based on a wrong expression for the static limit of the resummed gluon propagator. The effect of this, however, turns out to be cancelled fortuitously by another mistake, so as to leave all of their conclusions unchanged. I also verify the gauge independence of the results, which in the corrected calculation arises in a less obvious manner.Comment: 5 page

    Kramers-Kronig Relations For The Dielectric Function And The Static Conductivity Of Coulomb Systems

    Full text link
    The mutual influence of singularities of the dielectric permittivity e(q,w) in a Coulomb system in two limiting cases w tends to zero, q tends to zero, and opposite q tends to zero, w tends to zero is established. It is shown that the dielectric permittivity e(q,w) satisfies the Kramers-Kronig relations, which possesses the singularity due to a finite value of the static conductivity. This singularity is associated with the long "tails" of the time correlation functions.Comment: 9 pages, 0 figure

    Linear theory of nonlocal transport in a magnetized plasma

    Full text link
    A system of nonlocal electron-transport equations for small perturbations in a magnetized plasma is derived using the systematic closure procedure of V. Yu. Bychenkov et al., Phys. Rev. Lett. 75, 4405 (1995). Solution to the linearized kinetic equation with a Landau collision operator is obtained in the diffusive approximation. The Fourier components of the longitudinal, oblique, and transversal electron fluxes are found in an explicit form for quasistatic conditions in terms of the generalized forces: the gradients of density and temperature, and the electric field. The full set of nonlocal transport coefficients is given and discussed. Nonlocality of transport enhances electron fluxes across magnetic field above the values given by strongly collisional local theory. Dispersion and damping of magnetohydrodynamic waves in weakly collisional plasmas is discussed. Nonlocal transport theory is applied to the problem of temperature relaxation across the magnetic field in a laser hot spot.Comment: 27 pages, 13 figure

    Thermodynamic properties and electrical conductivity of strongly correlated plasma media

    Full text link
    We study thermodynamic properties and the electrical conductivity of dense hydrogen and deuterium using three methods: classical reactive Monte Carlo (REMC), direct path integral Monte Carlo (PIMC) and a quantum dynamics method in the Wigner representation of quantum mechanics. We report the calculation of the deuterium compression quasi-isentrope in good agreement with experiments. We also solve the Wigner-Liouville equation of dense degenerate hydrogen calculating the initial equilibrium state by the PIMC method. The obtained particle trajectories determine the momentum-momentum correlation functions and the electrical conductivity and are compared with available theories and simulations

    Damping rates for moving particles in hot QCD

    Full text link
    Using a program of perturbative resummation I compute the damping rates for fields at nonzero spatial momentum to leading order in weak coupling in hot QCDQCD. Sum rules for spectral densities are used to simplify the calculations. For massless fields the damping rate has an apparent logarithmic divergence in the infrared limit, which is cut off by the screening of static magnetic fields (``magnetic mass''). This demonstrates how at high temperature even perturbative quantities are sensitive to nonperturbative phenomenon.Comment: LaTeX file, 24 pages, BNL-P-1/92 (December, 1992

    The Quark-Gluon-Plasma Liquid

    Full text link
    The quark-gluon plasma close to the critical temperature is a strongly interacting system. Using strongly coupled, classical, non-relativistic plasmas as an analogy, we argue that the quark-gluon plasma is in the liquid phase. This allows to understand experimental observations in ultrarelativistic heavy-ion collisions and to interpret lattice QCD results. It also supports the indications of the presence of a strongly coupled QGP in ultrarelativistic heavy-ion collisions.Comment: 8 pages, 2 figures, final version, to bepublished in J. Phys.

    High Temperature Response Functions and the Non-Abelian Kubo Formula

    Full text link
    We describe the relationship between time-ordered and retarded response functions in a plasma. We obtain an expression, including the proper iϵi\epsilon-prescription, for the induced current due to hard thermal loops in a non-Abelian theory, thus giving the non-Abelian generalization of the Kubo formula. The result is closely related to the eikonal for a Chern-Simons theory and is relevant for a gauge-invariant description of Landau damping in the quark-gluon plasma at high temperature.Comment: 14 pages in LaTeX, MIT CTP #2205 and CU-TP #59
    corecore