326 research outputs found

    Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease

    Get PDF
    Previous studies showed that YAP1 is over-expressed in hepatocellular carcinoma (HCC). Here we observed higher expression of Yap1/Ctgf axis in dysplastic nodules and HCC chemically-induced in F344 rats, genetically susceptible to hepatocarcinogenesis, than in lesions induced in resistant BN rats. In BN rats, highest increase in Yap1-tyr357, p73 phosphorylation and Caspase 3 cleavage occurred. In human HCCs with poorer prognosis ( 3 years survival; HCCB). In the latter, higher levels of phosphorylated YAP1-ser127, YAP1-tyr357 and p73, YAP1 ubiquitination, and Caspase 3 cleavage occurred. Expression of stemness markers NANOG, OCT-3/4, and CD133 were highest in HCCP and correlated with YAP1 and YAP1-TEAD levels. In HepG2, Huh7, and Hep3B cells, forced YAP1 over-expression led to stem cell markers expression and increased cell viability, whereas inhibition of YAP1 expression by specific siRNA, or transfection of mutant YAP1 which does not bind to TEAD, induced opposite alterations. These changes were associated, in Huh7 cells transfected with YAP1 or YAP1 siRNA, with stimulation or inhibition of cell migration and invasivity, respectively. Furthermore, transcriptome analysis showed that YAP1 transfection in Huh7 cells induces over-expression of genes involved in tumor stemness. In conclusion, Yap1 post-translational modifications favoring its ubiquitination and apoptosis characterize HCC with better prognosis, whereas conditions favoring the formation of YAP1-TEAD complexes are associated with aggressiveness and acquisition of stemness features by HCC cells

    The study of applying heat to enhance moisture transfer in knitted spacer structures

    Get PDF
    The aim of the article is to report the research of the Advanced Textiles Research Group on the application of heat to enhance the moisture transmission in knitted spacer structures. The current trend in the design and development of moisture management textiles is to use knitted spacer structures. Generally, in moisture management textiles, the moisture is transmitted through the fabric due to capillary forces, which are influenced by the hydrostatic pressure difference between the two fabric layers and the geometry and the dimensions of the capillaries of the sandwiched fibre layer of a knitted spacer structures. However, the hydrostatic pressure difference is also influenced by the outer environmental changes. The research has demonstrated that the moisture transfer rate of up to 30% per 100 cm2 of fabric area can be achieved by creating a temperature gradient between the two layers of a knitted spacer structures. This temperature gradient was achieved by application of heat at one layer of the knitted spacer structures, which influenced the hydrostatic pressure difference of the knitted spacer structures. Application of heat to the knitted spacer structures was achieved by knitting small heater elements on side of knitted spacer structures to create an active moisture management structure. Wash tests, temperature rise rates and moisture wettability experiments of the active moisture management structure were performed, and the results are discussed in the publication

    THE RELATIONSHIP BETWEEN FIRST LANGUAGE AND CULTURE IN LEARNING AND TEACHING SISWATI AS A FIRST LANGUAGE

    Get PDF
    In most African countries the mother tongue leans much on culture. There is a conspicuous relationship between first language and culture. This study sought to establish the relationship between first language and culture in teaching and learning siSwati as a first language. The study adopted an interpretive research paradigm where a qualitative approach was used. The qualitative approach was employed because it is mainly concerned with human behavior, and data collected in natural settings. In this study, a case study design was selected. The case study design enabled me to obtain data from a purposively selected sample of siSwati teachers. Schools were also purposively selected. Data was collected through interviews and observations. The findings of the study revealed that first language goes hand in hand with the norms and customs of the people of a particular society. It was a finding in this study that teachers teaching siSwati as a first language are also teachers of culture and that trying to separate the two is not feasible. The study concluded that it is impossible for one to teach siSwati as a first language without teaching the siSwati culture because culture has a continuous influence on first language. In fact, the two issues are closely correlated and interrelated. Language is the representational of Emaswati and depicts their culture. In other words, first language is emblematic of the siSwati culture. It was recommended that siSwati culture should dominate in the siSwati syllabus since it (culture) is a rich source of the siSwati vocabulary.  Article visualizations

    Methylthioadenosine reverses brain autoimmune disease

    Get PDF
    OBJECTIVE: To assess the immunomodulatory activity of methylthioadenosine (MTA) in rodent experimental autoimmune encephalomyelitis (EAE) and in patients with multiple sclerosis. METHODS: We studied the effect of intraperitoneal MTA in the acute and chronic EAE model by quantifying clinical and histological scores and by performing immunohistochemistry stains of the brain. We studied the immunomodulatory effect of MTA in lymphocytes from EAE animals and in peripheral blood mononuclear cells from healthy control subjects and multiple sclerosis patients by assessing cell proliferation and cytokine gene expression, by real-time polymerase chain reaction, and by nuclear factor-kappaB modulation by Western blot. RESULTS: We found that MTA prevents acute EAE and, more importantly, reverses chronic-relapsing EAE. MTA treatment markedly inhibited brain inflammation and reduced brain damage. Administration of MTA suppressed T-cell activation in vivo and in vitro, likely through a blockade in T-cell signaling resulting in the prevention of inhibitor of kappa B (IkappaB-alpha) degradation and in the impaired activation transcription factor nuclear factor-kappaB. Indeed, MTA suppressed the production of proinflammatory genes and cytokines (interferon-gamma, tumor necrosis factor-alpha, and inducible nitric oxide synthase) and increased the production of antiinflammatory cytokines (interleukin-10). INTERPRETATION: MTA has a remarkable immunomodulatory activity and may be beneficial for multiple sclerosis and other autoimmune diseases

    S-Adenosylmethionine: From the Discovery of Its Inhibition of Tumorigenesis to Its Use as a Therapeutic Agent

    Get PDF
    Alterations of methionine cycle in steatohepatitis, cirrhosis, and hepatocellular carcinoma induce MAT1A decrease and MAT2A increase expressions with the consequent decrease of S-adenosyl-L-methionine (SAM). This causes non-alcoholic fatty liver disease (NAFLD). SAM administration antagonizes pathological conditions, including galactosamine, acetaminophen, and ethanol intoxications, characterized by decreased intracellular SAM. Positive therapeutic effects of SAM/vitamin E or SAM/ursodeoxycholic acid in animal models with NAFLD and intrahepatic cholestasis were not confirmed in humans. In in vitro experiments, SAM and betaine potentiate PegIFN-alpha-2a/2b plus ribavirin antiviral effects. SAM plus betaine improves early viral kinetics and increases interferon-stimulated gene expression in patients with viral hepatitis non-responders to pegIFN alpha/ribavirin. SAM prevents hepatic cirrhosis, induced by CCl4, inhibits experimental tumors growth and is proapoptotic for hepatocellular carcinoma and MCF-7 breast cancer cells. SAM plus Decitabine arrest cancer growth and potentiate doxorubicin effects on breast, head, and neck cancers. Furthermore, SAM enhances the antitumor effect of gemcitabine against pancreatic cancer cells, inhibits growth of human prostate cancer PC-3, colorectal cancer, and osteosarcoma LM-7 and MG-63 cell lines; increases genomic stability of SW480 cells. SAM reduces colorectal cancer progression and inhibits the proliferation of preneoplastic rat liver cells in vivo. The discrepancy between positive results of SAM treatment of experimental tumors and modest effects against human disease may depend on more advanced human disease stage at moment of diagnosis

    The warburg effect 97 years after its discovery

    Get PDF
    The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. the understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. in this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy

    Alterations of methionine metabolism in hepatocarcinogenesis: the emergent role of glycine N-methyltransferase in liver injury

    Get PDF
    The methionine and folate cycles play a fundamental role in cell physiology and their alteration is involved in liver injury and hepatocarcinogenesis. Glycine N-methyltransferase is implicated in methyl group supply, DNA methylation, and nucleotide biosynthesis. It regulates the cellular S-adenosylmethionine/S-adenosylhomocysteine ratio and S-adenosylmethionine-dependent methyl transfer reactions. Glycine N-methyltransferase is absent in fast-growing hepatocellular carcinomas and present at a low level in slower growing HCC ones. The mechanism of tumor suppression by glycine N-methyltransferase is not completely known. Glycine N-methyltransferase inhibits hepatocellular carcinoma growth through interaction with Dep domain-containing mechanistic target of rapamycin (mTor)-interacting protein, a binding protein overexpressed in hepatocellular carcinoma. The interaction of the phosphatase and tensin homolog inhibitor, phosphatidylinositol 3,4,5-trisphosphate-dependent rac exchanger, with glycine N-methyltransferase enhances proteasomal degradation of this exchanger by the E3 ubiquitin ligase HectH. Glycine N-methyltransferase also regulates genes related to detoxification and antioxidation pathways. It supports pyrimidine and purine syntheses and minimizes uracil incorporation into DNA as consequence of folate depletion. However, recent evidence indicates that glycine N-methyltransferase targeted into nucleus still exerts strong anti-proliferative effects independent of its catalytic activity, while its restriction to cytoplasm prevents these effects. Our current knowledge suggest that glycine N-methyltransferase plays a fundamental, even if not yet completely known, role in cellular physiology and highlights the need to further investigate this role in normal and cancer cells

    Targeted therapies in cholangiocarcinoma: emerging evidence from clinical trials

    Get PDF
    Cholangiocarcinoma (CCA) is a highly-aggressive malignancy arising from the biliary tree, characterized by a steady increase in incidence globally and a high mortality rate. Most CCAs are diagnosed in the advanced and metastatic phases of the disease, due to the paucity of signs and symptoms in the early stages. This fact, along with the poor results of the local and systemic therapies currently employed, is responsible for the poor outcome of CCA patients and strongly supports the need for novel therapeutic agents and strategies. In recent years, the introduction of next-generation sequencing technologies has opened new horizons for a better understanding of the genetic pathophysiology of CCA and, consequently, for the identification and evaluation of new treatments tailored to the molecular features or alterations progressively elucidated. In this review article, we describe the potential targets under investigation and the current molecular therapies employed in biliary tract cancers. In addition, we summarize the main drugs against CCA under evaluation in ongoing trials and describe the preliminary data coming from these pioneering studies

    eIF4A1 Is a Prognostic Marker and Actionable Target in Human Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is a primary liver tumor with high lethality and increasing incidence worldwide. While tumor resection or liver transplantation is effective in the early stages of the disease, the therapeutic options for advanced HCC remain limited and the benefits are temporary. Thus, novel therapeutic targets and more efficacious treatments against this deadly cancer are urgently needed. Here, we investigated the pathogenetic and therapeutic role of eukaryotic initiation factor 4A1 (eIF4A1) in this tumor type. We observed consistent eIF4A1 upregulation in HCC lesions compared with non-tumorous surrounding liver tissues. In addition, eIF4A1 levels were negatively correlated with the prognosis of HCC patients. In HCC lines, the exposure to various eIF4A inhibitors triggered a remarkable decline in proliferation and augmented apoptosis, paralleled by the inhibition of several oncogenic pathways. Significantly, anti-growth effects were achieved at nanomolar concentrations of the eIF4A1 inhibitors and were further increased by the simultaneous administration of the pan mTOR inhibitor, Rapalink-1. In conclusion, our results highlight the pathogenetic relevance of eIF4A1 in HCC and recommend further evaluation of the potential usefulness of pharmacological combinations based on eIF4A and mTOR inhibitors in treating this aggressive tumor
    corecore