700 research outputs found
Viscous damping of r-modes: Small amplitude instability
We study the viscous damping of r-modes of compact stars and analyze in
detail the regions where small amplitude modes are unstable to the emission of
gravitational radiation. We present general expressions for the viscous damping
times for arbitrary forms of interacting dense matter and derive general
semi-analytic results for the boundary of the instability region. These results
show that many aspects, like in particular the physically important minima of
the instability boundary, are surprisingly insensitive to detailed microscopic
properties of the considered form of matter. Our general expressions are
applied to the cases of hadronic stars, strange stars, and hybrid stars, and we
focus on equations of state that are compatible with the recent measurement of
a heavy compact star. We find that hybrid stars with a sufficiently small core
can "masquerade" as neutron stars and feature an instability region that is
indistinguishable from that of a neutron star, whereas neutron stars with a
core density high enough to allow direct Urca reactions feature a notch on the
right side of the instability region.Comment: 22 pages, 16 figures, published versio
Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects
Bulk silicon carbide (SiC) is a very promising material system for
bio-applications and quantum sensing. However, its optical activity lies beyond
the near infrared spectral window for in-vivo imaging and fiber communications
due to a large forbidden energy gap. Here, we report the fabrication of SiC
nanocrystals and isolation of different nanocrystal fractions ranged from 600
nm down to 60 nm in size. The structural analysis reveals further fragmentation
of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline
quality, separated by amorphization areas. We use neutron irradiation to create
silicon vacancies, demonstrating near infrared photoluminescence. Finally, we
detect, for the first time, room-temperature spin resonances of these silicon
vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use
them not only as in-vivo luminescent markers, but also as magnetic field and
temperature sensors, allowing for monitoring various physical, chemical and
biological processes.Comment: 5 pages, 4 figure
Viscous damping of r-modes: Large amplitude saturation
We analyze the viscous damping of r-mode oscillations of compact stars,
taking into account non-linear viscous effects in the large-amplitude regime.
The qualitatively different cases of hadronic stars, strange quark stars, and
hybrid stars are studied. We calculate the viscous damping times of r-modes,
obtaining numerical results and also general approximate analytic expressions
that explicitly exhibit the dependence on the parameters that are relevant for
a future spindown evolution calculation. The strongly enhanced damping of large
amplitude oscillations leads to damping times that are considerably lower than
those obtained when the amplitude dependence of the viscosity is neglected.
Consequently, large-amplitude viscous damping competes with the gravitational
instability at all physical frequencies and could stop the r-mode growth in
case this is not done before by non-linear hydrodynamic mechanisms.Comment: 18 pages, 17 figures, changed convention for the r-mode amplitude,
version to be published in PR
Guided Modes of Elliptical Metamaterial Waveguides
The propagation of guided electromagnetic waves in open elliptical
metamaterial waveguide structures is investigated. The waveguide contains a
negative-index media core, where the permittivity, and permeability
are negative over a given bandwidth. The allowed mode spectrum for these
structures is numerically calculated by solving a dispersion relation that is
expressed in terms of Mathieu functions. By probing certain regions of
parameter space, we find the possibility exists to have extremely localized
waves that transmit along the surface of the waveguide
A Trial of the Effect of Micronutrient Supplementation on Treatment Outcome, T Cell Counts, Morbidity, and Mortality in Adults with Pulmonary Tuberculosis.
Tuberculosis (TB) often coincides with nutritional deficiencies. The effects of micronutrient supplementation on TB treatment outcomes, clinical complications, and mortality are uncertain. We conducted a randomized, double-blind, placebo-controlled trial of micronutrients (vitamins A, B complex, C, and E, as well as selenium) in Dar es Salaam, Tanzania. We enrolled 471 human immunodeficiency virus (HIV)-infected and 416 HIV-negative adults with pulmonary TB at the time of initiating chemotherapy and monitored them for a median of 43 months. Micronutrients decreased the risk ofTB recurrence by 45% overall (95% confidence interval [CI], 7% to 67%; P = .02) and by 63% in HIV-infected patients (95% CI, 8% to 85%; P = .02). There were no significant effects on mortality overall; however, we noted a marginally significant 64% reduction of deaths in HIV-negative subjects (95% CI, -14% to 88%; P = .08). Supplementation increased CD3+ and CD4+ cell counts and decreased the incidence of extrapulmonary TB and genital ulcers in HIV-negative patients. Micronutrients reduced the incidence of peripheral neuropathy by 57% (95% CI, 41% to 69%; P < .001), irrespective of HIV status. There were no significant effects on weight gain, body composition, anemia, or HIV load. Micronutrient supplementation could improve the outcome in patients undergoing TB chemotherapy in Tanzania
All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide
We uncover the fine structure of a silicon vacancy in isotopically purified
silicon carbide (4H-SiC) and find extra terms in the spin Hamiltonian,
originated from the trigonal pyramidal symmetry of this spin-3/2 color center.
These terms give rise to additional spin transitions, which are otherwise
forbidden, and lead to a level anticrossing in an external magnetic field. We
observe a sharp variation of the photoluminescence intensity in the vicinity of
this level anticrossing, which can be used for a purely all-optical sensing of
the magnetic field. We achieve dc magnetic field sensitivity of 87 nT
Hz within a volume of mm at room temperature
and demonstrate that this contactless method is robust at high temperatures up
to at least 500 K. As our approach does not require application of
radiofrequency fields, it is scalable to much larger volumes. For an optimized
light-trapping waveguide of 3 mm the projection noise limit is below 100
fT Hz.Comment: 12 pages, 6 figures; additional experimental data and an extended
theoretical analysis are added in the second versio
Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: A randomized controlled trial in non-obese humans
Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-center, randomized clinical trial to determine CR's effect on inflammation and cell-mediated immunity, 218 healthy non-obese adults (20-50 y), were assigned 25% CR (n=143) or an ad-libitum (AL) diet (n=75), and outcomes tested at baseline, 12, and 24 months of CR. CR induced a 10.4% weight loss over the 2-y period. Relative to AL group, CR reduced circulating inflammatory markers, including total WBC and lymphocyte counts, ICAM-1 and leptin. Serum CRP and TNF-α concentrations were about 40% and 50% lower in CR group, respectively. CR had no effect on the delayed-type hypersensitivity skin response or antibody response to vaccines, nor did it cause difference in clinically significant infections. In conclusion, long-term moderate CR without malnutrition induces a significant and persistent inhibition of inflammation without impairing key in vivo indicators of cell-mediated immunity. Given the established role of these pro-inflammatory molecules in the pathogenesis of multiple chronic diseases, these CR-induced adaptations suggest a shift toward a healthy phenotype
Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: A randomized clinical trial
Young-onset calorie restriction (CR) in rodents decreases serum IGF-1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anticancer and anti-aging effects. However, little is known on the effects of CR on the IGF-1 system and cortisol in humans. To test the sustained effects of CR on these key hormonal adaptations, we performed a multicenter randomized trial of a 2-year 25% CR intervention in 218 nonobese (body mass index between 22 and 27.8 kg m(-2) ) young and middle-aged (20-50 years age range) men and women. Average CR during the first 6 months was 19.5 ± 0.8% and 9.1 ± 0.7% over the next 18 months of the study. Weight loss averaged 7.6 ± 0.3 kg over the 2-years period of which 71% was fat mass loss (P < 0.0001). Average CR during the CR caused a significant 21% increase in serum IGFBP-1 and a 42% reduction in IGF-1:IGFBP-1 ratio at 2 years (P < 0.008), but did not change IGF-1 and IGF-1:IGFBP-3 ratio levels. Serum cortisol concentrations were slightly but significantly increased by CR at 1 year only (P = 0.003). Calorie restriction had no effect on serum concentrations of PDGF-AB and TGFβ-1. We conclude, on the basis of the present and previous findings, that, in contrast to rodents, humans do not respond to CR with a decrease in serum IGF-1 concentration or with a sustained and biological relevant increase in serum cortisol. However, long-term CR in humans significantly and persistently increases serum IGFBP-1 concentration
Deriving of Single Intensive Picosecond Optical Pulses from a High-Power Gain-Switched Laser Diode by Spectral Filtering
Single 25 ps/16 W optical pulses were achieved by spectral filtering from a multiheterostructure gain-switched laser diode with its quasisteady-state modes suppressed by a factor of 103 as compared with the peak power. A significant transient spectrum broadening makes this possible provided that a very high dI/dt rate of the pumping current pulse is used. A simple numerical model is suggested which describes adequately both the spectral and transient features of the observed phenomenon. It follows from the model that single picosecond optical pulses can be obtained from any type of high power semiconductor laser
- …
