2,155 research outputs found

    Fluctuations of a holographic quantum Hall fluid

    Full text link
    We analyze the neutral spectrum of the holographic quantum Hall fluid described by the D2-D8' model. As expected for a quantum Hall state, we find the system to be stable and gapped and that, at least over much of the parameter space, the lowest excitation mode is a magneto-roton. In addition, we find magneto-rotons in higher modes as well. We show that these magneto-rotons are direct consequences of level crossings between vector and scalar modes.Comment: 20 pages, 8 figures; v.2 figures improved, 2 figures added, and text clarified particularly in Sec. 5, to appear in JHE

    Game theory of mind

    Get PDF
    This paper introduces a model of ‘theory of mind’, namely, how we represent the intentions and goals of others to optimise our mutual interactions. We draw on ideas from optimum control and game theory to provide a ‘game theory of mind’. First, we consider the representations of goals in terms of value functions that are prescribed by utility or rewards. Critically, the joint value functions and ensuing behaviour are optimised recursively, under the assumption that I represent your value function, your representation of mine, your representation of my representation of yours, and so on ad infinitum. However, if we assume that the degree of recursion is bounded, then players need to estimate the opponent's degree of recursion (i.e., sophistication) to respond optimally. This induces a problem of inferring the opponent's sophistication, given behavioural exchanges. We show it is possible to deduce whether players make inferences about each other and quantify their sophistication on the basis of choices in sequential games. This rests on comparing generative models of choices with, and without, inference. Model comparison is demonstrated using simulated and real data from a ‘stag-hunt’. Finally, we note that exactly the same sophisticated behaviour can be achieved by optimising the utility function itself (through prosocial utility), producing unsophisticated but apparently altruistic agents. This may be relevant ethologically in hierarchal game theory and coevolution

    Single-atom imaging of fermions in a quantum-gas microscope

    Get PDF
    Single-atom-resolved detection in optical lattices using quantum-gas microscopes has enabled a new generation of experiments in the field of quantum simulation. Fluorescence imaging of individual atoms has so far been achieved for bosonic species with optical molasses cooling, whereas detection of fermionic alkaline atoms in optical lattices by this method has proven more challenging. Here we demonstrate single-site- and single-atom-resolved fluorescence imaging of fermionic potassium-40 atoms in a quantum-gas microscope setup using electromagnetically-induced-transparency cooling. We detected on average 1000 fluorescence photons from a single atom within 1.5s, while keeping it close to the vibrational ground state of the optical lattice. Our results will enable the study of strongly correlated fermionic quantum systems in optical lattices with resolution at the single-atom level, and give access to observables such as the local entropy distribution and individual defects in fermionic Mott insulators or anti-ferromagnetically ordered phases.Comment: 7 pages, 5 figures; Nature Physics, published online 13 July 201

    Occasional errors can benefit coordination

    Get PDF
    The chances solving a problem that involves coordination between people are increased by introducing robotic players that sometimes make mistakes. This finding has implications for real-world coordination problems

    Optimization viewpoint on Kalman smoothing, with applications to robust and sparse estimation

    Full text link
    In this paper, we present the optimization formulation of the Kalman filtering and smoothing problems, and use this perspective to develop a variety of extensions and applications. We first formulate classic Kalman smoothing as a least squares problem, highlight special structure, and show that the classic filtering and smoothing algorithms are equivalent to a particular algorithm for solving this problem. Once this equivalence is established, we present extensions of Kalman smoothing to systems with nonlinear process and measurement models, systems with linear and nonlinear inequality constraints, systems with outliers in the measurements or sudden changes in the state, and systems where the sparsity of the state sequence must be accounted for. All extensions preserve the computational efficiency of the classic algorithms, and most of the extensions are illustrated with numerical examples, which are part of an open source Kalman smoothing Matlab/Octave package.Comment: 46 pages, 11 figure

    Сутність та класифікація ризиків інвестиційної діяльності

    Get PDF
    Наводиться визначення поняттю "ризики інвестиційної діяльності" за рахунок поєднання його сутнісних характеристик, виконано узагальнення класифікації цих ризиків, запропоновано введення нової класифікаційної групи – "корпоративні ризики", які пов'язані з можливістю втрати контролю над підприємством інвестором-акціонером

    The prescribed mean curvature equation in weakly regular domains

    Get PDF
    We show that the characterization of existence and uniqueness up to vertical translations of solutions to the prescribed mean curvature equation, originally proved by Giusti in the smooth case, holds true for domains satisfying very mild regularity assumptions. Our results apply in particular to the non-parametric solutions of the capillary problem for perfectly wetting fluids in zero gravity. Among the essential tools used in the proofs, we mention a \textit{generalized Gauss-Green theorem} based on the construction of the weak normal trace of a vector field with bounded divergence, in the spirit of classical results due to Anzellotti, and a \textit{weak Young's law} for (Λ,r0)(\Lambda,r_{0})-minimizers of the perimeter.Comment: 23 pages, 1 figure --- The results on the weak normal trace of vector fields have been now extended and moved in a self-contained paper available at: arXiv:1708.0139

    Qubit portrait of the photon-number tomogram and separability of two-mode light states

    Full text link
    In view of the photon-number tomograms of two-mode light states, using the qubit-portrait method for studying the probability distributions with infinite outputs, the separability and entanglement detection of the states are studied. Examples of entangled Gaussian state and Schr\"{o}dinger cat state are discussed.Comment: 20 pages, 6 figures, TeX file, to appear in Journal of Russian Laser Researc

    Neural Network Parameterizations of Electromagnetic Nucleon Form Factors

    Full text link
    The electromagnetic nucleon form-factors data are studied with artificial feed forward neural networks. As a result the unbiased model-independent form-factor parametrizations are evaluated together with uncertainties. The Bayesian approach for the neural networks is adapted for chi2 error-like function and applied to the data analysis. The sequence of the feed forward neural networks with one hidden layer of units is considered. The given neural network represents a particular form-factor parametrization. The so-called evidence (the measure of how much the data favor given statistical model) is computed with the Bayesian framework and it is used to determine the best form factor parametrization.Comment: The revised version is divided into 4 sections. The discussion of the prior assumptions is added. The manuscript contains 4 new figures and 2 new tables (32 pages, 15 figures, 2 tables
    corecore