6,469 research outputs found
The integrated dynamic land use and transport model MARS
Cities worldwide face problems like congestion or outward migration of businesses. The involved transport and land use interactions require innovative tools. The dynamic Land Use and Transport Interaction model MARS (Metropolitan Activity Relocation Simulator) is part of a structured decision making process. Cities are seen as self organizing systems. MARS uses Causal Loop Diagrams from Systems Dynamics to explain cause and effect relations. MARS has been benchmarked against other published models. A user friendly interface has been developed to support decision makers. Its usefulness was tested through workshops in Asia. This paper describes the basis, capabilities and uses of MARS
High-resolution Velocity Fields of Low-mass Disk Galaxies. I. CO Observations
This paper is the first in a series whose aim is to examine the relative distributions of dark and baryonic matter as a function of star formation history in a representative sample of low-mass disk galaxies. In this paper, we present high-resolution 12 CO(j=1→0) interferometry for a sample of 26 nearby dwarf galaxies that were obtained from the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Among these 26 galaxies, 14 have good CO detections, including 6 galaxies previously detected in single-dish CO measurements and 8 newly detected ones. We find a linear correlation between the CO flux and the mid- and far-IR flux from the WISE and IRAS catalogs. Compared to the far-IR flux, the mid-IR flux may be a better indication of whether a galaxy contains sufficient CO for detection at the level of instrument sensitivity of CARMA. This correlation might prove to be useful in future studies to help choosing other CO targets for observation. The median molecular mass (including helium) of our galaxies is 2.8×10 8 M⊙, which is consistent with past observations for dwarf galaxies. The molecular content is weakly correlated with the dynamical mass, r-band luminosity and size of the galaxies. The median ratios of molecular mass versus dynamical mass and molecular mass versus r-band luminosity are M mol M dyn ≈ 0.035 and M mol L r ≈ 0.078M⊙ L r , ⊙, respectively, which are also consistent with past observations for dwarf galaxies
High-resolution Velocity Fields of Low-mass Disk Galaxies. I. CO Observations
This paper is the first in a series whose aim is to examine the relative distributions of dark and baryonic matter as a function of star formation history in a representative sample of low-mass disk galaxies. In this paper, we present high-resolution 12 CO(j=1→0) interferometry for a sample of 26 nearby dwarf galaxies that were obtained from the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Among these 26 galaxies, 14 have good CO detections, including 6 galaxies previously detected in single-dish CO measurements and 8 newly detected ones. We find a linear correlation between the CO flux and the mid- and far-IR flux from the WISE and IRAS catalogs. Compared to the far-IR flux, the mid-IR flux may be a better indication of whether a galaxy contains sufficient CO for detection at the level of instrument sensitivity of CARMA. This correlation might prove to be useful in future studies to help choosing other CO targets for observation. The median molecular mass (including helium) of our galaxies is 2.8×10 8 M⊙, which is consistent with past observations for dwarf galaxies. The molecular content is weakly correlated with the dynamical mass, r-band luminosity and size of the galaxies. The median ratios of molecular mass versus dynamical mass and molecular mass versus r-band luminosity are M mol M dyn ≈ 0.035 and M mol L r ≈ 0.078M⊙ L r , ⊙, respectively, which are also consistent with past observations for dwarf galaxies
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments
The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS
The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain.
GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia
The cultural capitalists: notes on the ongoing reconfiguration of trafficking culture in Asia
Most analysis of the international flows of the illicit art market has described a global situation in which a postcolonial legacy of acquisition and collection exploits cultural heritage by pulling it westwards towards major international trade nodes in the USA and Europe. As the locus of consumptive global economic power shifts, however, these traditional flows are pulled in other directions: notably for the present commentary, towards and within Asia
Modulating attentional load affects numerosity estimation: evidence against a pre-attentive subitizing mechanism
Traditionally, the visual enumeration of a small number of items (1 to about 4), referred to as subitizing, has been thought of as a parallel and pre-attentive process and functionally different from the serial attentive enumeration of larger numerosities. We tested this hypothesis by employing a dual task paradigm that systematically manipulated the attentional resources available to an enumeration task. Enumeration accuracy for small numerosities was severely decreased as more attentional resources were taken away from the numerical task, challenging the traditionally held notion of subitizing as a pre-attentive, capacity-independent process. Judgement of larger numerosities was also affected by dual task conditions and attentional load. These results challenge the proposal that small numerosities are enumerated by a mechanism separate from large numerosities and support the idea of a single, attention-demanding enumeration mechanism
Uncovering the hidden costs of offshoring: The interplay of complexity, organizational design, and experience
This study investigates estimation errors due to hidden costs—the costs of implementation that are neglected in strategic decision-making processes—in the context of services offshoring. Based on data from the Offshoring Research Network, we find that decision makers are more likely to make cost-estimation errors given increasing configuration and task complexity in captive offshoring and offshore outsourcing, respectively. Moreover, we show that experience and a strong orientation toward organizational design in the offshoring strategy reduce the cost-estimation errors that follow from complexity. Our findings contribute to research on the effectiveness of sourcing and global strategies by stressing the importance of organizational design and experience in dealing with increasing complexity
Visual search in ecological and non-ecological displays: Evidence for a non-monotonic effect of complexity on performance
Copyright @ 2013 PLoSThis article has been made available through the Brunel Open Access Publishing Fund.Considerable research has been carried out on visual search, with single or multiple targets. However, most studies have used artificial stimuli with low ecological validity. In addition, little is known about the effects of target complexity and expertise in visual search. Here, we investigate visual search in three conditions of complexity (detecting a king, detecting a check, and detecting a checkmate) with chess players of two levels of expertise (novices and club players). Results show that the influence of target complexity depends on level of structure of the visual display. Different functional relationships were found between artificial (random chess positions) and ecologically valid (game positions) stimuli: With artificial, but not with ecologically valid stimuli, a “pop out” effect was present when a target was visually more complex than distractors but could be captured by a memory chunk. This suggests that caution should be exercised when generalising from experiments using artificial stimuli with low ecological validity to real-life stimuli.This study is funded by Brunel University and the article is made available through the Brunel Open Access Publishing Fund
Quantum Storage of Photonic Entanglement in a Crystal
Entanglement is the fundamental characteristic of quantum physics. Large
experimental efforts are devoted to harness entanglement between various
physical systems. In particular, entanglement between light and material
systems is interesting due to their prospective roles as "flying" and
stationary qubits in future quantum information technologies, such as quantum
repeaters and quantum networks. Here we report the first demonstration of
entanglement between a photon at telecommunication wavelength and a single
collective atomic excitation stored in a crystal. One photon from an
energy-time entangled pair is mapped onto a crystal and then released into a
well-defined spatial mode after a predetermined storage time. The other photon
is at telecommunication wavelength and is sent directly through a 50 m fiber
link to an analyzer. Successful transfer of entanglement to the crystal and
back is proven by a violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality by almost three standard deviations (S=2.64+/-0.23). These results
represent an important step towards quantum communication technologies based on
solid-state devices. In particular, our resources pave the way for building
efficient multiplexed quantum repeaters for long-distance quantum networks.Comment: 5 pages, 3 figures + supplementary information; fixed typo in ref.
[36
- …
