76,274 research outputs found

    Just Another Gibbs Additive Modeller: Interfacing JAGS and mgcv

    Get PDF
    The BUGS language offers a very flexible way of specifying complex statistical models for the purposes of Gibbs sampling, while its JAGS variant offers very convenient R integration via the rjags package. However, including smoothers in JAGS models can involve some quite tedious coding, especially for multivariate or adaptive smoothers. Further, if an additive smooth structure is required then some care is needed, in order to centre smooths appropriately, and to find appropriate starting values. R package mgcv implements a wide range of smoothers, all in a manner appropriate for inclusion in JAGS code, and automates centring and other smooth setup tasks. The purpose of this note is to describe an interface between mgcv and JAGS, based around an R function, `jagam', which takes a generalized additive model (GAM) as specified in mgcv and automatically generates the JAGS model code and data required for inference about the model via Gibbs sampling. Although the auto-generated JAGS code can be run as is, the expectation is that the user would wish to modify it in order to add complex stochastic model components readily specified in JAGS. A simple interface is also provided for visualisation and further inference about the estimated smooth components using standard mgcv functionality. The methods described here will be un-necessarily inefficient if all that is required is fully Bayesian inference about a standard GAM, rather than the full flexibility of JAGS. In that case the BayesX package would be more efficient.Comment: Submitted to the Journal of Statistical Softwar

    Hamilton's theory of turns revisited

    Get PDF
    We present a new approach to Hamilton's theory of turns for the groups SO(3) and SU(2) which renders their properties, in particular their composition law, nearly trivial and immediately evident upon inspection. We show that the entire construction can be based on binary rotations rather than mirror reflections.Comment: 7 pages, 4 figure

    Temperature reducing coating for metals subject to flame exposure Patent

    Get PDF
    Anodizing method for providing metal surfaces with temperature reducing coatings against flame

    Nonclassicality and the concept of local constraints on the photon number distribution

    Full text link
    We exploit results from the classical Stieltjes moment problem to bring out the totality of all the information regarding phase insensitive nonclassicality of a state as captured by the photon number distribution p_n. Central to our approach is the realization that n !p_n constitutes the sequence of moments of a (quasi) probability distribution, notwithstanding the fact that p_n can by itself be regarded as a probability distribution. This leads to classicality restrictions on p_n that are local in n involving p_n's for only a small number of consecutive n's, enabling a critical examination of the conjecture that oscillation in p_n is a signature of nonclassicality.Comment: Five pages in revtex with one ps figure included using eps
    corecore