4,912 research outputs found

    Approximation of functions of large matrices with Kronecker structure

    Full text link
    We consider the numerical approximation of f(A)bf({\cal A})b where bRNb\in{\mathbb R}^{N} and A\cal A is the sum of Kronecker products, that is A=M2I+IM1RN×N{\cal A}=M_2 \otimes I + I \otimes M_1\in{\mathbb R}^{N\times N}. Here ff is a regular function such that f(A)f({\cal A}) is well defined. We derive a computational strategy that significantly lowers the memory requirements and computational efforts of the standard approximations, with special emphasis on the exponential function, for which the new procedure becomes particularly advantageous. Our findings are illustrated by numerical experiments with typical functions used in applications

    Matrix-equation-based strategies for convection-diffusion equations

    Full text link
    We are interested in the numerical solution of nonsymmetric linear systems arising from the discretization of convection-diffusion partial differential equations with separable coefficients and dominant convection. Preconditioners based on the matrix equation formulation of the problem are proposed, which naturally approximate the original discretized problem. For certain types of convection coefficients, we show that the explicit solution of the matrix equation can effectively replace the linear system solution. Numerical experiments with data stemming from two and three dimensional problems are reported, illustrating the potential of the proposed methodology

    The Lyapunov matrix equation. Matrix analysis from a computational perspective

    Full text link
    Decay properties of the solution XX to the Lyapunov matrix equation AX+XAT=DAX + X A^T = D are investigated. Their exploitation in the understanding of equation matrix properties, and in the development of new numerical solution strategies when DD is not low rank but possibly sparse is also briefly discussed.Comment: This work is a contribution to the Seminar series "Topics in Mathematics", of the PhD Program of the Mathematics Department, Universit\`a di Bologna, Ital

    Preconditioning of Active-Set Newton Methods for PDE-constrained Optimal Control Problems

    Full text link
    We address the problem of preconditioning a sequence of saddle point linear systems arising in the solution of PDE-constrained optimal control problems via active-set Newton methods, with control and (regularized) state constraints. We present two new preconditioners based on a full block matrix factorization of the Schur complement of the Jacobian matrices, where the active-set blocks are merged into the constraint blocks. We discuss the robustness of the new preconditioners with respect to the parameters of the continuous and discrete problems. Numerical experiments on 3D problems are presented, including comparisons with existing approaches based on preconditioned conjugate gradients in a nonstandard inner product

    On the decay of the inverse of matrices that are sum of Kronecker products

    Full text link
    Decay patterns of matrix inverses have recently attracted considerable interest, due to their relevance in numerical analysis, and in applications requiring matrix function approximations. In this paper we analyze the decay pattern of the inverse of banded matrices in the form S=MIn+InMS=M \otimes I_n + I_n \otimes M where MM is tridiagonal, symmetric and positive definite, InI_n is the identity matrix, and \otimes stands for the Kronecker product. It is well known that the inverses of banded matrices exhibit an exponential decay pattern away from the main diagonal. However, the entries in S1S^{-1} show a non-monotonic decay, which is not caught by classical bounds. By using an alternative expression for S1S^{-1}, we derive computable upper bounds that closely capture the actual behavior of its entries. We also show that similar estimates can be obtained when MM has a larger bandwidth, or when the sum of Kronecker products involves two different matrices. Numerical experiments illustrating the new bounds are also reported

    Contraction and optimality properties of an adaptive Legendre-Galerkin method: the multi-dimensional case

    Full text link
    We analyze the theoretical properties of an adaptive Legendre-Galerkin method in the multidimensional case. After the recent investigations for Fourier-Galerkin methods in a periodic box and for Legendre-Galerkin methods in the one dimensional setting, the present study represents a further step towards a mathematically rigorous understanding of adaptive spectral/hphp discretizations of elliptic boundary-value problems. The main contribution of the paper is a careful construction of a multidimensional Riesz basis in H1H^1, based on a quasi-orthonormalization procedure. This allows us to design an adaptive algorithm, to prove its convergence by a contraction argument, and to discuss its optimality properties (in the sense of non-linear approximation theory) in certain sparsity classes of Gevrey type

    Stability Estimates and Structural Spectral Properties of Saddle Point Problems

    Full text link
    For a general class of saddle point problems sharp estimates for Babu\v{s}ka's inf-sup stability constants are derived in terms of the constants in Brezzi's theory. In the finite-dimensional Hermitian case more detailed spectral properties of preconditioned saddle point matrices are presented, which are helpful for the convergence analysis of common Krylov subspace methods. The theoretical results are applied to two model problems from optimal control with time-periodic state equations. Numerical experiments with the preconditioned minimal residual method are reported

    Anisotropic selection in cellular genetic algorithms

    Get PDF
    In this paper we introduce a new selection scheme in cellular genetic algorithms (cGAs). Anisotropic Selection (AS) promotes diversity and allows accurate control of the selective pressure. First we compare this new scheme with the classical rectangular grid shapes solution according to the selective pressure: we can obtain the same takeover time with the two techniques although the spreading of the best individual is different. We then give experimental results that show to what extent AS promotes the emergence of niches that support low coupling and high cohesion. Finally, using a cGA with anisotropic selection on a Quadratic Assignment Problem we show the existence of an anisotropic optimal value for which the best average performance is observed. Further work will focus on the selective pressure self-adjustment ability provided by this new selection scheme
    corecore