84 research outputs found

    White top-emitting organic light-emitting diodes with solution-processed nano-particle scattering layers

    Get PDF
    The authors are grateful to Novaled GmbH (Dresden) for financial support and material supply. M. C. Gather acknowledges financial support from the Scottish Founding Council through SUPA.A random scattering approach to enhance light extraction in white top-emitting organic light-emitting diodes (OLEDs) is reported. Through solution processing from fluorinated solvents, a nano-particlescattering layer (NPSL) can be deposited directly on top of small molecule OLEDs without affecting their electrical performance. The scattering length for light inside the NPSL is determined from transmission measurements and found to be in agreement with Mie scattering theory. Furthermore, the dependence of the light outcoupling enhancement on electron transport layer thickness is studied. Depending on the electron transport layer thickness, the NPSL enhances the external quantum efficiency of the investigated white OLEDs by between 1.5 and 2.3-fold. For a device structure that has been optimized prior to application of the NPSL, the maximum external quantum efficiency is improved from 4.7% to 7.4% (1.6-fold improvement). In addition, the scattering layer strongly reduces the undesired shift in emission color with viewing angle.Publisher PDFPeer reviewe

    Orientation of OLED emitter molecules revealed by XRD

    Get PDF
    We thank Dr. Lutz Wilde at Fraunhofer IPMS, Center Nanoelectronic Technologies, Dresden for carrying out the GIXRD measurements. CM acknowledges funding by the Graduate Academy of the TU Dresden and by the European Commission through a Marie Skłodowska Curie individual fellowship (703387).Thin films of the phosphorescent emitters Ir(ppy)3 and Ir(ppy)2(acac) are investigated by GIXRD and GIWAXS. Both molecules form crystalline grains and exhibit a preferred orientation that is pertained even when doped into a host.Postprin

    Parameter Optimization of Light Outcoupling Structures for High-Efficiency Organic Light-Emitting Diodes

    Full text link
    Organic light-emitting diodes (OLEDs) have successfully entered the display market and continue to be attractive for many other applications. As state-of-the-art OLEDs can reach an internal quantum efficiency (IQE) of almost 100 %, light outcoupling remains one of the major screws left to be turned. The fact that no superior outcoupling structure has been found underlines that further investigations are needed to understand their prospect. In this paper, we use two-dimensional titanium dioxide (2D TiO2_2) block arrays as a model of an internal light outcoupling structure and investigate the influence of its geometrical parameters on achieving the highest external quantum efficiency (EQE) for OLEDs. The multivariable problem is evaluated with the visual assistance of scatter plots, which enables us to propose an optimal period range and block width-to-distance ratio. The highest EQE achieved is 45.2 % with internal and external structures. This work contributes to the highly desired prediction of ideal light outcoupling structures in the future.Comment: 14 pages, 8 Postscript figure

    High-performance organic light-emitting diodes comprising ultrastable glass layers

    Get PDF
    Organic light-emitting diodes with ultrastable glass emission layers show increased efficiency and device stability. Organic light-emitting diodes (OLEDs) are one of the key solid-state light sources for various applications including small and large displays, automotive lighting, solid-state lighting, and signage. For any given commercial application, OLEDs need to perform at their best, which is judged by their device efficiency and operational stability. We present OLEDs that comprise functional layers fabricated as ultrastable glasses, which represent the thermodynamically most favorable and, thus, stable molecular conformation achievable nowadays in disordered solids. For both external quantum efficiencies and LT lifetimes, OLEDs with four different phosphorescent emitters show >15% enhancements over their respective reference devices. The only difference to the latter is the growth condition used for ultrastable glass layers that is optimal at about 85% of the materials' glass transition temperature. These improvements are achieved through neither material refinements nor device architecture optimization, suggesting a general applicability of this concept to maximize the OLED performance, no matter which specific materials are used

    Investigating the molecular orientation of Ir(ppy)3 and Ir(ppy)2(acac) emitter complexes by X-ray diffraction

    Get PDF
    This work received funding from the European Community Seventh Framework Programme under Grant Agreement No. FP7 267995 (NUDEV) and from the European Social Fund and the Free State of Saxony through the OrganoMechanics project. CM acknowledges funding from the Graduate Academy of the TU Dresden and by the European Commission through a Marie Skłodowska-Curie Individual Fellowship (703387).We study thermally evaporated thin films of Ir(ppy)3 and Ir(ppy)2(acac) by means of grazing incidence X-ray diffraction (GIXRD) and grazing incidence wide-angle X-ray scattering (GIWAXS). Ir(ppy)3 and Ir(ppy)2(acac) are both widely used as phosphorescent green emitter molecules in organic light-emitting diodes (OLEDs) and it was previously found that differences in their average transition dipole orientation affect the light extraction efficiency in OLEDs. Here we show that in pure films both materials form crystalline grains and that these grains exhibit a preferred orientation with respect to the substrate. When doped into an amorphous host, both the orientation and formation of the crystallites remain nearly unchanged for the concentration range accessible with GIXRD and GIWAXS. This is remarkable given that the transition dipole moments have found to be oriented only for Ir(ppy)2(acac) but isotropic for Ir(ppy)3. Analysis of the crystallite size indicates that the tendency to form crystallites is stronger for Ir(ppy)3 than for Ir(ppy)2(acac). From a comparison of the thin-film diffraction data of Ir(ppy)3 to its powder pattern, we infer that Ir(ppy)3 molecules are oriented with their permanent dipole moment roughly parallel to the substrate. Our findings will guide the further understanding of the mechanisms controlling transition dipole orientation and may thus lead to further improvements in device efficiency.PostprintPeer reviewe

    Three-terminal RGB full-color OLED pixels for ultrahigh density displays

    Get PDF
    In recent years, the organic light-emitting diode (OLED) technology has been a rapidly evolving field of research, successfully making the transition to commercial applications such as mobile phones and other small portable devices. OLEDs provide efficient generation of light, excellent color quality, and allow for innovative display designs, e.g., curved shapes, mechanically flexible and/or transparent devices. Especially their self emissive nature is a highly desirable feature for display applications. In this work, we demonstrate an approach for full-color OLED pixels that are fabricated by vertical stacking of a red-, green-, and blue-emitting unit. Each unit can be addressed separately which allows for efficient generation of every color that is accessible by superpositioning the spectra of the individual emission units. Here, we use a combination of time division multiplexing and pulse width modulation to achieve efficient color mixing. The presented device design requires only three independently addressable electrodes, simplifying both fabrication and electrical driving. The device is built in a top-emission geometry, which is highly desirable for display fabrication as the pixel can be directly deposited onto back-plane electronics. Despite the top-emission design and the application of three silver layers within the device, there is only a minor color shift even for large viewing angles. The color space spanned by the three emission sub-units exceeds the sRGB space, providing more saturated green/yellow/red colors. Furthermore, the electrical performance of each individual unit is on par with standard single emission unit OLEDs, showing very low leakage currents and achieving brightness levels above 1000 cd/m2 at moderate voltages of around 3-4 V.Publisher PDFPeer reviewe
    corecore