16 research outputs found
A stable genetic polymorphism underpinning microbial syntrophy
Syntrophies are metabolic cooperations, whereby two organisms co-metabolize a substrate in an interdependent manner. Many of the observed natural syntrophic interactions are mandatory in the absence of strong electron acceptors, such that one species in the syntrophy has to assume the role of electron sink for the other. While this presents an ecological setting for syntrophy to be beneficial, the potential genetic drivers of syntrophy remain unknown to date. Here, we show that the syntrophic sulfate-reducing species Desulfovibrio vulgaris displays a stable genetic polymorphism, where only a specific genotype is able to engage in syntrophy with the hydrogenotrophic methanogen Methanococcus maripaludis. This 'syntrophic' genotype is characterized by two genetic alterations, one of which is an in-frame deletion in the gene encoding for the ion-translocating subunit cooK of the membrane-bound COO hydrogenase. We show that this genotype presents a specific physiology, in which reshaping of energy conservation in the lactate oxidation pathway enables it to produce sufficient intermediate hydrogen for sustained M. maripaludis growth and thus, syntrophy. To our knowledge, these findings provide for the first time a genetic basis for syntrophy in nature and bring us closer to the rational engineering of syntrophy in synthetic microbial communities
FLight Biofabrication Supports Maturation of Articular Cartilage with Anisotropic Properties
Tissue engineering approaches that recapitulate cartilage biomechanical properties are emerging as promising methods to restore the function of injured or degenerated tissue. However, despite significant progress in this research area, the generation of engineered cartilage constructs akin to native counterparts still represents an unmet challenge. In particular, the inability to accurately reproduce cartilage zonal architecture with different collagen fibril orientations is a significant limitation. The arrangement of the extracellular matrix (ECM) plays a fundamental role in determining the mechanical and biological functions of the tissue. In this study, it is shown that a novel light-based approach, Filamented Light (FLight) biofabrication, can be used to generate highly porous, 3D cell-instructive anisotropic constructs that lead to directional collagen deposition. Using a photoclick-based photoresin optimized for cartilage tissue engineering, a significantly improved maturation of the cartilaginous tissues with zonal architecture and remarkable native-like mechanical properties is demonstrated
Systematic study of polymer gas sampling bags for offline analysis of exhaled breath
Polymeric bags are a widely applied, simple, and cost-effective method for the storage and offline analysis of gaseous samples. Various materials have been used as sampling bags, all known to contain impurities and differing in their cost, durability, and storage capabilities. Herein, we present a comparative study of several well-known bag materials, Tedlar (PVF), Kynar (PVDF), Teflon (PTFE), and Nalophan (PET), as well as a new material, ethylene vinyl copolymer (EVOH), commonly used for storing food. We investigated the influences of storage conditions, humidity, bag cleaning, and light exposure on volatile organic compound concentration (acetone, acetic acid, isoprene, benzene, limonene, among others) in samples of exhaled human breath stored in bags for up to 48 h. Specifically, we show high losses of short-chain fatty acids (SCFAs) in bags of all materials (for most SCFAs, less than 50% after 8 h of storage). We found that samples in Tedlar, Nalophan, and EVOH bags undergo changes in composition when exposed to UV radiation over a period of 48 h. We report high initial impurity levels in all the bags and their doubling after a period of 48 h. We compare secondary electrospray ionization and proton transfer reaction mass spectrometry in the context of offline analysis after storage in sampling bags. We provide an analytical perspective on the temporal evolution of bag contents by presenting the intensity changes of all significant m/z features. We also present a simple, automated, and cost-effective offline sample introduction system, which enables controlled delivery of collected gaseous samples from polymeric bags into the mass spectrometer. Overall, our findings suggest that sampling bags exhibit high levels of impurities, are sensitive to several environmental factors (e.g. light exposure), and provide low recoveries for some classes of compounds, e.g. SCFAs.ISSN:1752-7155ISSN:1752-716
Engineering Inflammation-Resistant Cartilage: Bridging Gene Therapy and Tissue Engineering
Articular cartilage defects caused by traumatic injury rarely heal spontaneously and predispose into post-traumatic osteoarthritis. In the current autologous cell-based treatments the regenerative process is often hampered by the poor regenerative capacity of adult cells and the inflammatory state of the injured joint. The lack of ideal treatment options for cartilage injuries motivated the authors to tissue engineer a cartilage tissue which would be more resistant to inflammation. A clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout of TGF-β-activated kinase 1 (TAK1) gene in polydactyly chondrocytes provides multivalent protection against the signals that activate the pro-inflammatory and catabolic NF-κB pathway. The TAK1-KO chondrocytes encapsulate into a hyaluronan hydrogel deposit copious cartilage extracellular matrix proteins and facilitate integration onto native cartilage, even under proinflammatory conditions. Furthermore, when implanted in vivo, compared to WT fewer pro-inflammatory M1 macrophages invade the cartilage, likely due to the lower levels of cytokines secreted by the TAK1-KO polydactyly chondrocytes. The engineered cartilage thus represents a new paradigm-shift for the creation of more potent and functional tissues for use in regenerative medicine
Untethered: using remote magnetic fields for regenerative medicine
Magnetic fields are increasingly being used for the remote, noncontact manipulation of cells and biomaterials for a wide range of regenerative medical (RM) applications. They have been deployed for their direct effects on biological systems or in conjunction with magnetic materials or magnetically tagged cells for a targeted therapeutic effect. In this work, we highlight the recent trends on the broad use of magnetic fields for the homing of therapeutic cells and particles at targeted tissue sites, biomimetic tissue fabrication, and control of cell fate and proliferation. We also survey the design and control principles of magnetic manipulation systems, including their capabilities and limitations, which can guide future research into developing more effective magnetic field-based regenerative strategies.ISSN:0167-7799ISSN:0167-943
FLight Biofabrication Supports Maturation of Articular Cartilage with Anisotropic Properties
Tissue engineering approaches that recapitulate cartilage biomechanical properties are emerging as promising methods to restore the function of injured or degenerated tissue. However, despite significant progress in this research area, the generation of engineered cartilage constructs akin to native counterparts still represents an unmet challenge. In particular, the inability to accurately reproduce cartilage zonal architecture with different collagen fibril orientations is a significant limitation. The arrangement of the extracellular matrix (ECM) plays a fundamental role in determining the mechanical and biological functions of the tissue. In this study, it is shown that a novel light-based approach, Filamented Light (FLight) biofabrication, can be used to generate highly porous, 3D cell-instructive anisotropic constructs that lead to directional collagen deposition. Using a photoclick-based photoresin optimized for cartilage tissue engineering, a significantly improved maturation of the cartilaginous tissues with zonal architecture and remarkable native-like mechanical properties is demonstrated.ISSN:2192-2640ISSN:2192-265
Biofabrication of Heterogeneous, Multi-Layered, and Human-Scale Tissue Transplants Using Eluting Mold Casting
The creation of multi-tissue auricular transplants for the treatment of microtia is a challenge due to the complex and layered structure of this anatomical tissue. A novel casting technique for the 3D biofabrication of heterogeneous, multi-layered, and human-scale tissue transplants using eluting agarose molds is presented. The molds are generated by casting agarose into custom 3D-printed containers, termed metamolds, optimized to facilitate the hydrogel casting process based on geometric and topological constraints. Casting yields high resolution (50 µm) and allows for subsequent casting of further hydrogel layers on the transplant. Multi-layered auricular constructs are fabricated on a cartilage core consisting of a hyaluronic acid-alginate double network and an adjacent gelatin-based dermal layer. Bonding between adjacent layers is achieved by orthogonal physical and enzymatic crosslinking of residual functional groups between each layer. Material composition and culture duration are optimized for each layer allowing for maturation into cartilaginous and pre-vascularized dermal tissues. To demonstrate the scalability of this technique for the biofabrication of human-sized transplants, bi-layered human-sized ears are cast. Overall, this novel casting technique offers a promising approach for the fabrication of complex tissue grafts, overcoming the limitations of other traditional biofabrication methods.ISSN:1616-3028ISSN:1616-301
Engineering Inflammation-Resistant Cartilage : Bridging Gene Therapy and Tissue Engineering
Articular cartilage defects caused by traumatic injury rarely heal spontaneously and predispose into post-traumatic osteoarthritis. In the current autologous cell-based treatments the regenerative process is often hampered by the poor regenerative capacity of adult cells and the inflammatory state of the injured joint. The lack of ideal treatment options for cartilage injuries motivated the authors to tissue engineer a cartilage tissue which would be more resistant to inflammation. A clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout of TGF-beta-activated kinase 1 (TAK1) gene in polydactyly chondrocytes provides multivalent protection against the signals that activate the pro-inflammatory and catabolic NF-kappa B pathway. The TAK1-KO chondrocytes encapsulate into a hyaluronan hydrogel deposit copious cartilage extracellular matrix proteins and facilitate integration onto native cartilage, even under proinflammatory conditions. Furthermore, when implanted in vivo, compared to WT fewer pro-inflammatory M1 macrophages invade the cartilage, likely due to the lower levels of cytokines secreted by the TAK1-KO polydactyly chondrocytes. The engineered cartilage thus represents a new paradigm-shift for the creation of more potent and functional tissues for use in regenerative medicine.Peer reviewe
