1,883 research outputs found
Verification of Identity and Syntax Check of Verilog and LEF Files
The Verilog and LEF files are units of the digital design flow [1][2]. They are being developed in different stages. Before the development of the LEF file, the Verilog file passes through numerous steps during which partial losses of information are possible. The identity check allows to make sure that during the flow the information has not been lost. The syntax accuracy of the Verilog and LEF files is checked as well.
nbspnbspnbspnbspnbspnbspnbspnbspnbspnbspnbsp The scripting language Perl is selected for the program. The language is flexible to work with text files [3].
nbspnbspnbspnbspnbspnbspnbspnbspnbspnbspnbsp The method developed in the present paper is substantial as the application of integrated circuits today is actual in different scientific, technical and many other spheres which gradually finds wider application bringing about large demand
Analysis of Cosequences of Faults in General Zero Transmission Lines of Power Supply Stations
Zero transmission line faults in power supply systems in large apartment houses, office blocks, offices and other structures cause voltage excursions,which are in the spotlight of this research. The phenomenon has been commented from the theoretical perspective, and emergency situations, which are likely to arise as a result ofmalfunction of single-phase power supply consumers, as well as the probable dangers of fire occurrences, have been revealed. We offer to install an appropriateprotective device to avoid such emergency situations
Temporal Localization of Fine-Grained Actions in Videos by Domain Transfer from Web Images
We address the problem of fine-grained action localization from temporally
untrimmed web videos. We assume that only weak video-level annotations are
available for training. The goal is to use these weak labels to identify
temporal segments corresponding to the actions, and learn models that
generalize to unconstrained web videos. We find that web images queried by
action names serve as well-localized highlights for many actions, but are
noisily labeled. To solve this problem, we propose a simple yet effective
method that takes weak video labels and noisy image labels as input, and
generates localized action frames as output. This is achieved by cross-domain
transfer between video frames and web images, using pre-trained deep
convolutional neural networks. We then use the localized action frames to train
action recognition models with long short-term memory networks. We collect a
fine-grained sports action data set FGA-240 of more than 130,000 YouTube
videos. It has 240 fine-grained actions under 85 sports activities. Convincing
results are shown on the FGA-240 data set, as well as the THUMOS 2014
localization data set with untrimmed training videos.Comment: Camera ready version for ACM Multimedia 201
Evaluating Two-Stream CNN for Video Classification
Videos contain very rich semantic information. Traditional hand-crafted
features are known to be inadequate in analyzing complex video semantics.
Inspired by the huge success of the deep learning methods in analyzing image,
audio and text data, significant efforts are recently being devoted to the
design of deep nets for video analytics. Among the many practical needs,
classifying videos (or video clips) based on their major semantic categories
(e.g., "skiing") is useful in many applications. In this paper, we conduct an
in-depth study to investigate important implementation options that may affect
the performance of deep nets on video classification. Our evaluations are
conducted on top of a recent two-stream convolutional neural network (CNN)
pipeline, which uses both static frames and motion optical flows, and has
demonstrated competitive performance against the state-of-the-art methods. In
order to gain insights and to arrive at a practical guideline, many important
options are studied, including network architectures, model fusion, learning
parameters and the final prediction methods. Based on the evaluations, very
competitive results are attained on two popular video classification
benchmarks. We hope that the discussions and conclusions from this work can
help researchers in related fields to quickly set up a good basis for further
investigations along this very promising direction.Comment: ACM ICMR'1
Receptive Field Block Net for Accurate and Fast Object Detection
Current top-performing object detectors depend on deep CNN backbones, such as
ResNet-101 and Inception, benefiting from their powerful feature
representations but suffering from high computational costs. Conversely, some
lightweight model based detectors fulfil real time processing, while their
accuracies are often criticized. In this paper, we explore an alternative to
build a fast and accurate detector by strengthening lightweight features using
a hand-crafted mechanism. Inspired by the structure of Receptive Fields (RFs)
in human visual systems, we propose a novel RF Block (RFB) module, which takes
the relationship between the size and eccentricity of RFs into account, to
enhance the feature discriminability and robustness. We further assemble RFB to
the top of SSD, constructing the RFB Net detector. To evaluate its
effectiveness, experiments are conducted on two major benchmarks and the
results show that RFB Net is able to reach the performance of advanced very
deep detectors while keeping the real-time speed. Code is available at
https://github.com/ruinmessi/RFBNet.Comment: Accepted by ECCV 201
Model of creation and management of the process of technological projects development
The purpose of the article is to determine and describe main principles and model of development of regional business accelerator on the basis of technical university for development of innovational startups. The research included the work on identification of the problems of the process of commercialization of technological developments, which business accelerator should solve. One of the basic purposes of creation of business accelerator is increase of the flow of prepared projects for consideration by investment committees of funds of early stages. Accelerator can be a full-scale unified mechanism of formation of deals flow from diversified mass of completed R&D. As a result of the research, the authors come to a conclusion that the process of creation of value and movement from prototype to entering a market supposes long chain with formation of various risks at each stage – scientific, financial, administrative, etc. Minimization of such risks requires from partners, involved with the work of business accelerator, solving emerging problems together. Such motivation could be formed by development of business accelerator by the principles of partnership and creation of equal access and rights for basic members.peer-reviewe
Taxes, start-up costs, and innovative entrepreneurship
Prior research investigates the role of start-up costs and taxes with regard to entrepreneurship. Yet, little distinction is made regarding the type of entrepreneurship, particularly innovative versus non-innovative entrepreneurship. We shall argue that start-up costs and taxes are associated in different ways with innovative versus non-innovative entrepreneurship. Taxes being recurring costs should mainly relate to innovative entrepreneurship, whereas start-up costs being one-off costs should mainly relate to non-innovative entrepreneurship.
Analyzing a dataset of 632,116 individuals, including 43,223 entrepreneurs from 53 countries, we can partially confirm our predictions. Corporate taxes show a negative relationship with innovative entrepreneurship, whereas income taxes seem to have no relationship. High start-up costs have a positive relationship with innovative entrepreneurship, although this finding only holds true in cross-sectional investigations. Our paper contributes to the discussion on how governmental regulation and taxes relate to entrepreneurship
- …
