331 research outputs found

    TALIS 2013: Working Conditions, Teacher Job Satisfaction and Retention

    Get PDF

    Back to the future with academy chain accountability?

    Get PDF
    In this article, Sam Sims argues that the Department for Education’s new performance ranking of local authorities and academy chains is effectively meaningless and therefore not very useful. Rather than repeating the mistakes of past efforts to identify effective education providers, we should focus on evaluating policies

    The Teaching and Learning International Survey (TALIS) 2018: June 2019

    Get PDF

    High Potential Middle Leaders (Secondary) programme: an evaluation

    Get PDF

    The role of tool geometry in process damped milling

    Get PDF
    The complex interaction between machining structural systems and the cutting process results in machining instability, so called chatter. In some milling scenarios, process damping is a useful phenomenon that can be exploited to mitigate chatter and hence improve productivity. In the present study, experiments are performed to evaluate the performance of process damped milling considering different tool geometries (edge radius, rake and relief angles and variable helix/pitch). The results clearly indicate that variable helix/pitch angles most significantly increase process damping performance. Additionally, increased cutting edge radius moderately improves process damping performance, while rake and relief angles have a smaller and closely coupled effect

    Chatter, process damping, and chip segmentation in turning: A signal processing approach

    Get PDF
    An increasing number of aerospace components are manufactured from titanium and nickel alloys that are difficult to machine due to their thermal and mechanical properties. This limits the metal removal rates that can be achieved from the production process. However, under these machining conditions the phenomenon of process damping can be exploited to help avoid self-excited vibrations known as regenerative chatter. This means that greater widths of cut can be taken so as to increase the metal removal rate, and hence offset the cutting speed restrictions that are imposed by the thermo-mechanical properties of the material. However, there is little or no consensus as to the underlying mechanisms that cause process damping. The present study investigates two process damping mechanisms that have previously been proposed in the machining literature: the tool flank/workpiece interference effect, and the short regenerative effect. A signal processing procedure is employed to identify flank/workpiece interference from experimental data. Meanwhile, the short regenerative model is solved using a new frequency domain approach that yields additional insight into its stabilising effect. However, analysis and signal processing of the experimentally obtained data reveals that neither of these models can fully explain the increases in stability that are observed in practice. Meanwhile, chip segmentation effects were observed in a number of measurements, and it is suggested that segmentation could play an important role in the process-damped chatter stability of these materials
    corecore