7,847 research outputs found
Ferroelectric Based Photonic Crystal Cavity by Liquid Crystal Infiltration
Cataloged from PDF version of article.A novel type of two-dimensional photonic crystal is investigated for it optical properties as a core-shell-type ferroelectric nanorod infiltrated with nematic liquid crystals. Using the plane wave expansion method and finite-difference time-domain method, the photonic crystal structure, which is composed of a photonic crystal in a core-shell-type ferroelectric nanorod, is designed for the square lattice and the hexagonal lattice. It has been used 5CB as a photonic crystal core, and LiNbO3 as a ferroelectric material. The photonic crystal with a core-shell-type LiNbO3 nanorod infiltrated with nematic liquid crystals is compared with the photonic crystal with solid LiNbO3 rods and the photonic crystal with hollow LiNbO3 rods
Effect of contiguity and figure-ground organization on the area rule of lightness
Cataloged from PDF version of article.In a simple two-dimensional (2D) display composed of two uniform surfaces with different luminances, the lightness of the darker surface varies as a function of its relative area while its luminance is held constant (Gilchrist & Radonjić, 2009; Li & Gilchrist, 1999). This phenomenon is known as the area rule of lightness, and although it is extensively studied in the literature, the underlying principles are still largely unknown. Here, using computer-generated stimuli, we investigated the effects of contiguity and figure-ground organization on the area rule of lightness. Stimuli were 2D disks composed of radial sectors with high (25 cd/ m2) or low (8 cd/m2 ) luminance. On each trial, observers judged the lightness of the sectors by adjusting the luminance of a matching patch. Four conditions were tested. In the contiguous condition, there were one dark and one light sector, in the noncontiguous condition, both the light and dark surfaces were split into four equal radial sectors. Figure and ground conditions were generated by adding small contextual elements to the stimulus. We found that the area rule applied under all conditions; however, the functional form of the effect showed marked differences across conditions. Taken together, our results show that both high-level (e.g., perceptual grouping, figure-ground organization) and low-level (e.g., spatial-summation) mechanisms play a role in the area rule of lightness. © 2014 ARVO
A p-adic look at the Diophantine equation x^{2}+11^{2k}=y^{n}
We find all solutions of Diophantine equation x^{2}+11^{2k} = y^{n} where
x>=1, y>=1, n>=3 and k is natural number. We give p-adic interpretation of this
equation.Comment: 4 page
Electron Spectroscopy and the Electronic Structure of KNbO3: First Principle Calculations
Cataloged from PDF version of article.The electronic structures of KNbO(3)were calculated within the density functional theory, and their evolution was analyzed as the crystal-field symmetry changes from cubic to rhombohedral via tetragonal phase. We carried out electron-energy loss spectroscopy experiments by using synchrotron radiation and compared the results with the theoretical spectra calculated within Density Functional Theory. The dominant role of the NbO(6)octahedra in the formation of the energy spectra of KNbO(3)compound was demonstrated. The anomalous behavior of plasmons in ferroelectrics was exhibited by the function representing the characteristic energy loss in the region of phase transition
Anisotropic superconductivity and magnetism in single-crystal RbEuFeAs
We investigate the anisotropic superconducting and magnetic properties of
single-crystal RbEuFeAs using magnetotransport and magnetization
measurements. We determine a magnetic ordering temperature of the Eu-moments of
= 15 K and a superconducting transition temperature of = 36.8 K.
The superconducting phase diagram is characterized by high upper critical field
slopes of -70 kG/K and -42 kG/K for in-plane and out-of-plane fields,
respectively, and a surprisingly low superconducting anisotropy of =
1.7. Ginzburg-Landau parameters of and indicate extreme type-II behavior. These superconducting properties are in
line with those commonly seen in optimally doped Fe-based superconductors. In
contrast, Eu-magnetism is quasi-two dimensional as evidenced by highly
anisotropic in-plane and out-of-plane exchange constants of 0.6 K and 0.04
K. A consequence of the quasi-2D nature of the Eu-magnetism are strong magnetic
fluctuation effects, a large suppression of the magnetic ordering temperature
as compared to the Curie-Weiss temperature, and a cusp-like anomaly in the
specific heat devoid of any singularity. Magnetization curves reveal a clear
magnetic easy-plane anisotropy with in-plane and out-of-plane saturation fields
of 2 kG and 4 kG.Comment: 9 pages, 9 figure
Optimization and Modeling of Flow Characteristics of Low-Oil DDGS Using Regression Techniques
Citation: R. Bhadra, R. P. K. Ambrose, M. E. Casada, S. Simsek, K. Siliveru. (2017). Optimization and Modeling of Flow Characteristics of Low-Oil DDGS Using Regression Techniques. Transactions of the ASABE. 60(1): 249-258. (doi: 10.13031/trans.11928)Storage conditions, such as temperature, relative humidity (RH), consolidation pressure (CP), and time, affect the flow behavior of bulk solids such as distillers dried grains with solubles (DDGS), which is widely used as animal feed by the U.S. cattle and swine industries. The typical dry-grind DDGS production process in most corn ethanol plants has been adapted to facilitate oil extraction from DDGS for increased profits, resulting in production of low-oil DDGS. Many studies have shown that caking, and thus flow, of regular DDGS is an issue during handling and transportation. This study measured the dynamic flow properties of low-oil DDGS. Flow properties such as stability index (SI), basic flow energy (BFE), flow rate index (FRI), cohesion, Jenike flow index, and wall friction angle were measured at varying temperature (20°C, 40°C, 60°C), RH (40%, 60%, 80%), moisture content (MC; 8%, 10%, 12% w.b.), CP (generated by 0, 10, and 20 kg overbearing loads), and consolidation time (CT; 2, 4, 6, 8 days) for low-oil DDGS. Response surface modeling (RSM) and multivariate analysis showed that MC, temperature, and RH were the most influential variables on flow properties. The dynamic flow properties as influenced by environmental conditions were modeled using the RSM technique. Partial least squares regression yielded models with R2 values greater than 0.80 for SI, BFE, and cohesion as a function of MC, temperature, RH, CP, and CT using two principal components. These results provide critical information for quantifying and predicting the flow behavior of low-oil DDGS during commercial handling and transportation
A note on q-Bernoulli numbers and polynomials
By using p-adic q-integrals, we study the q-Bernoulli numbers and polynomials
of higher order.Comment: 8 page
A note on q-Euler numbers and polynomials
The purpose of this paper is to construct q-Euler numbers and polynomials by
using p-adic q-integral equations on Zp. Finally, we will give some interesting
formulae related to these q-Euler numbers and polynomials.Comment: 6 page
Any l-state improved quasi-exact analytical solutions of the spatially dependent mass Klein-Gordon equation for the scalar and vector Hulthen potentials
We present a new approximation scheme for the centrifugal term to obtain a
quasi-exact analytical bound state solutions within the framework of the
position-dependent effective mass radial Klein-Gordon equation with the scalar
and vector Hulth\'{e}n potentials in any arbitrary dimension and orbital
angular momentum quantum numbers The Nikiforov-Uvarov (NU) method is used
in the calculations. The relativistic real energy levels and corresponding
eigenfunctions for the bound states with different screening parameters have
been given in a closed form. It is found that the solutions in the case of
constant mass and in the case of s-wave () are identical with the ones
obtained in literature.Comment: 25 pages, 1 figur
- …
