2,120 research outputs found
Gravitational trapping potential with arbitrary extra dimensions
We extend a recently discovered, non-singular 6 dimensional brane, solution
to D=4+n dimensions. As with the previous 6D solution the present solution
provides a gravitational trapping mechanism for fields of spin 0, 1/2, 1 and 2.
There is an important distinction between 2 extra dimensions and extra
dimensions that makes this more than a trivial extension. In contrast to
gravity in n >2 dimensions, gravity in n=2 dimensions is conformally flat. The
stress-energy tensor required by this solution has reasonable physically
properties, and for n=2 and n=3 can be made to asymptotically go to zero as one
moves away from the brane.Comment: 7 pages revtex. No figures. References added some discussions change
Estudio preliminar sobre el efecto del ultrasonido en las propiedades fisicoquímicas del vino tinto
Ultrasound is regarded as a potential alternative method for improving the quality of some wines. This study was initiated with the objective of evaluating the effects of ultrasound on some important physicochemical properties of red wine such as chromatic characteristics (CC), electrical conductivity (EC), pH, titratable acidity (TA), total phenolic compounds (TPCs) and DPPH (1,1-diphenyl-2-picryl-hydrazyl) free radical scavenging activity (DFRSA). The operational parameters assessed were ultrasound power, ultrasound frequency, exposure time and bath temperature. Results illustrated that there were significant changes in CC, EC and TPC while pH and TA hardly changed except for samples treated at high temperatures. DFRSA was correlated to TPC during ultrasonic treatment. Application of principal component analysis to the experimental data suggested that exposure time was the factor with the greatest ability to induce changes on wine. Results suggested that ultrasound may be applied to improve some physicochemical properties of red wine.El ultrasonido se considera uno de los métodos alternativos potenciales para mejorar la calidad de algunos vinos. Se comenzó este estudio con el objetivo de evaluar los efectos del ultrasonido en algunas de la propiedades fisicoquímicas importantes del vino tinto como son: las características cromáticas (CC), la conductividad eléctrica (EC), el pH, la acidez (TA), los compuestos fenólicos totales (TPC) y el DPPH (1,1-difenil-2-picrilhidrazil) de actividad de eliminación de radicales libres (DFRSA). Los parámetros operacionales examinados fueron: la potencia de ultrasonido, la frecuencia de ultrasonido, el tiempo de exposición y la temperatura de baño. Los resultados ilustraron la existencia de cambios significativos en CC, EC y TPC, mientras que el pH y TA prácticamente no cambiaron excepto en las muestras tratadas con altas temperaturas. DFRSA tuvo correlación con TPC durante el tratamiento con ultrasonido. La aplicación de análisis de componentes principales a los datos experimentales sugirió que el tiempo de exposición era el factor con mayor habilidad para inducir cambios en el vino. Los resultados sugirieron que el ultrasonido podría aplicarse para mejorar algunas de las propiedades fisicoquímicas del vino tinto.National Natural Science Foundation of China [No. 31101324]Natural Science Foundation of Shaanxi Province, China [No. 2015JM3097]Technology Transfer Promotion Project of Xi’an, Shaanxi Province, China [No.CXY1434(5)]Fundamental Research Funds for the Central Universities of China [Nos. GK201302039, GK201404006
Spin-zero anomaly in the magnetic quantum oscillations of a two-dimensional metal
We report on an anomalous behavior of the spin-splitting zeros in the de
Haas-van Alphen (dHvA) signal of a quasi-two-dimensional organic
superconductor. The zeros as well as the angular dependence of the amplitude of
the second harmonic deviate remarkably from the standard Lifshitz-Kosevich (LK)
prediction. In contrast, the angular dependence of the fundamental dHvA
amplitude as well as the spin-splitting zeros of the Shubnikov-de Haas signal
follow the LK theory. We can explain this behavior by small chemical-potential
oscillations and find a very good agreement between theory and experiment. A
detailed wave-shape analysis of the dHvA signal corroborates the existence of
an oscillating chemical potential
Stochastic Approach to Enantiomeric Excess Amplification and Chiral Symmetry Breaking
Stochastic aspects of chemical reaction models related to the Soai reactions
as well as to the homochirality in life are studied analytically and
numerically by the use of the master equation and random walk model. For
systems with a recycling process, a unique final probability distribution is
obtained by means of detailed balance conditions. With a nonlinear
autocatalysis the distribution has a double-peak structure, indicating the
chiral symmetry breaking. This problem is further analyzed by examining
eigenvalues and eigenfunctions of the master equation. In the case without
recycling process, final probability distributions depend on the initial
conditions. In the nonlinear autocatalytic case, time-evolution starting from a
complete achiral state leads to a final distribution which differs from that
deduced from the nonzero recycling result. This is due to the absence of the
detailed balance, and a directed random walk model is shown to give the correct
final profile. When the nonlinear autocatalysis is sufficiently strong and the
initial state is achiral, the final probability distribution has a double-peak
structure, related to the enantiomeric excess amplification. It is argued that
with autocatalyses and a very small but nonzero spontaneous production, a
single mother scenario could be a main mechanism to produce the homochirality.Comment: 25 pages, 6 figure
On the relation between Unruh and Sokolov--Ternov effects
We show that the Sokolov--Ternov effect -- the depolarization of particles in
storage rings coming from synchrotron radiation due to spin flip transitions --
is physically equivalent to the Unruh effect for circular acceleration if one
uses a spin 1/2 particle as the Unruh--DeWitt detector. It is shown that for
the electron, with gyromagnetic number , the exponential
contribution to the polarization, which usually characterizes the Unruh effect,
is "hidden" in the standard Sokolov-Ternov effect making it hard to observe.
Thus, our conclusions are different in detail from previous work.Comment: 23 pages, no figure
De Sitter space and perpetuum mobile
We give general arguments that any interacting non--conformal {\it classical}
field theory in de Sitter space leads to the possibility of constructing a
perpetuum mobile. The arguments are based on the observation that massive free
falling particles can radiate other massive particles on the classical level as
seen by the free falling observer. The intensity of the radiation process is
non-zero even for particles with any finite mass, i.e. with a wavelength which
is within the causal domain. Hence, we conclude that either de Sitter space can
not exist eternally or that one can build a perpetuum mobile.Comment: 11 pages revtex, no figures. Added discussion to strengthen
conclusio
Enhancement of the upper critical field and a field-induced superconductivity in antiferromagnetic conductors
We propose a mechanism by which the paramagnetic pair-breaking effect is
largely reduced in superconductors with coexisting antiferromagnetic long-
range and short-range orders. The mechanism is an extension of the Jaccarino
and Peter mechanism to antiferromagnetic conductors, but the resultant phase
diagram is quite different. In order to illustrate the mechanism, we examine a
model which consists of mobile electrons and antiferromagnetically correlated
localized spins with Kondo coupling between them. It is found that for weak
Kondo coupling, the superconductivity occurs over an extraordinarily wide
region of the magnetic field including zero field. The critical field exceeds
the Chandrasekhar and Clogston limit, but there is no lower limit in contrast
to the Jaccarino and Peter mechanism. On the other hand, for strong Kondo
coupling, both the low-field superconductivity and a field-induced
superconductivity occur. Possibilities in hybrid ruthenate cuprate
superconductors and some organic superconductors are discussed.Comment: 5 pages, 1 figure, revtex.sty, to be published in J.Phys.Soc.Jpn.
Vol.71, No.3 (2002
Anomalous behaviour of the in-plane electrical conductivity of the layered superconductor -(BEDT-TTF)Cu(NCS)
The quasiparticle scattering rates in high-quality crystals of the
quasi-two-dimensional superconductor -(BEDT-TTF)Cu(NCS) ~are
studied using the Shubnikov-de Haas effect and MHz penetration-depth
experiments. There is strong evidence that the broadening of the Landau-levels
is primarily caused by spatial inhomogeneities, indicating a quasiparticle
lifetime for the Landau states ps. In contrast to the predictions of
Fermi-liquid theory, the scattering time derived from the intralayer
conductivity is found to be much shorter ( ps)
On the de Haas - van Alphen oscillations in quasi-two-dimensional metals: effect of the Fermi surface curvature
Here, we present the results of theoretical analysis of the de Haas-van
Alphen oscillations in quasi-two-dimensional normal metals. We had been
studying effects of the Fermi surface (FS) shape on these oscillations. It was
shown that the effects could be revealed and well pronounced when the FS
curvature becomes zero at cross-sections with extremal cross-sectional areas.
In this case both shape and amplitude of the oscillations could be
significantly changed. Also, we analyze the effect of the FS local geometry on
the angular dependencies of the oscillation amplitudes when the magnetic field
is tilted away from the FS symmetry axis by the angle We show that a
peak appears at whose height could be of the same order as
the maximum at the Yamaji angle. This peak emerges when the FS includes zero
curvature cross-sections of extremal areas. Such maximum was observed in
experiments on the The obtained results could be
applied to organic metals and other quasi-two-dimensional compounds.Comment: 9 pages, 4 figures, text added, references adde
- …
