603 research outputs found
Quantum Computation by Adiabatic Evolution
We give a quantum algorithm for solving instances of the satisfiability
problem, based on adiabatic evolution. The evolution of the quantum state is
governed by a time-dependent Hamiltonian that interpolates between an initial
Hamiltonian, whose ground state is easy to construct, and a final Hamiltonian,
whose ground state encodes the satisfying assignment. To ensure that the system
evolves to the desired final ground state, the evolution time must be big
enough. The time required depends on the minimum energy difference between the
two lowest states of the interpolating Hamiltonian. We are unable to estimate
this gap in general. We give some special symmetric cases of the satisfiability
problem where the symmetry allows us to estimate the gap and we show that, in
these cases, our algorithm runs in polynomial time.Comment: 24 pages, 12 figures, LaTeX, amssymb,amsmath, BoxedEPS packages;
email to [email protected]
How many functions can be distinguished with k quantum queries?
Suppose an oracle is known to hold one of a given set of D two-valued
functions. To successfully identify which function the oracle holds with k
classical queries, it must be the case that D is at most 2^k. In this paper we
derive a bound for how many functions can be distinguished with k quantum
queries.Comment: 5 pages. Lower bound on sorting n items improved to (1-epsilon)n
quantum queries. Minor changes to text and corrections to reference
Intermediate problems in modular circuits satisfiability
In arXiv:1710.08163 a generalization of Boolean circuits to arbitrary finite
algebras had been introduced and applied to sketch P versus NP-complete
borderline for circuits satisfiability over algebras from congruence modular
varieties. However the problem for nilpotent (which had not been shown to be
NP-hard) but not supernilpotent algebras (which had been shown to be polynomial
time) remained open.
In this paper we provide a broad class of examples, lying in this grey area,
and show that, under the Exponential Time Hypothesis and Strong Exponential
Size Hypothesis (saying that Boolean circuits need exponentially many modular
counting gates to produce boolean conjunctions of any arity), satisfiability
over these algebras have intermediate complexity between and , where measures how much a nilpotent algebra
fails to be supernilpotent. We also sketch how these examples could be used as
paradigms to fill the nilpotent versus supernilpotent gap in general.
Our examples are striking in view of the natural strong connections between
circuits satisfiability and Constraint Satisfaction Problem for which the
dichotomy had been shown by Bulatov and Zhuk
Probabilistic Model Counting with Short XORs
The idea of counting the number of satisfying truth assignments (models) of a
formula by adding random parity constraints can be traced back to the seminal
work of Valiant and Vazirani, showing that NP is as easy as detecting unique
solutions. While theoretically sound, the random parity constraints in that
construction have the following drawback: each constraint, on average, involves
half of all variables. As a result, the branching factor associated with
searching for models that also satisfy the parity constraints quickly gets out
of hand. In this work we prove that one can work with much shorter parity
constraints and still get rigorous mathematical guarantees, especially when the
number of models is large so that many constraints need to be added. Our work
is based on the realization that the essential feature for random systems of
parity constraints to be useful in probabilistic model counting is that the
geometry of their set of solutions resembles an error-correcting code.Comment: To appear in SAT 1
The Computational Power of Minkowski Spacetime
The Lorentzian length of a timelike curve connecting both endpoints of a
classical computation is a function of the path taken through Minkowski
spacetime. The associated runtime difference is due to time-dilation: the
phenomenon whereby an observer finds that another's physically identical ideal
clock has ticked at a different rate than their own clock. Using ideas
appearing in the framework of computational complexity theory, time-dilation is
quantified as an algorithmic resource by relating relativistic energy to an
th order polynomial time reduction at the completion of an observer's
journey. These results enable a comparison between the optimal quadratic
\emph{Grover speedup} from quantum computing and an speedup using
classical computers and relativistic effects. The goal is not to propose a
practical model of computation, but to probe the ultimate limits physics places
on computation.Comment: 6 pages, LaTeX, feedback welcom
Codeword stabilized quantum codes: algorithm and structure
The codeword stabilized ("CWS") quantum codes formalism presents a unifying
approach to both additive and nonadditive quantum error-correcting codes
(arXiv:0708.1021). This formalism reduces the problem of constructing such
quantum codes to finding a binary classical code correcting an error pattern
induced by a graph state. Finding such a classical code can be very difficult.
Here, we consider an algorithm which maps the search for CWS codes to a problem
of identifying maximum cliques in a graph. While solving this problem is in
general very hard, we prove three structure theorems which reduce the search
space, specifying certain admissible and optimal ((n,K,d)) additive codes. In
particular, we find there does not exist any ((7,3,3)) CWS code though the
linear programming bound does not rule it out. The complexity of the CWS search
algorithm is compared with the contrasting method introduced by Aggarwal and
Calderbank (arXiv:cs/0610159).Comment: 11 pages, 1 figur
Adiabatic Quantum Computing with Phase Modulated Laser Pulses
Implementation of quantum logical gates for multilevel system is demonstrated
through decoherence control under the quantum adiabatic method using simple
phase modulated laser pulses. We make use of selective population inversion and
Hamiltonian evolution with time to achieve such goals robustly instead of the
standard unitary transformation language.Comment: 19 pages, 6 figures, submitted to JOP
- …
