603 research outputs found

    Quantum Computation by Adiabatic Evolution

    Get PDF
    We give a quantum algorithm for solving instances of the satisfiability problem, based on adiabatic evolution. The evolution of the quantum state is governed by a time-dependent Hamiltonian that interpolates between an initial Hamiltonian, whose ground state is easy to construct, and a final Hamiltonian, whose ground state encodes the satisfying assignment. To ensure that the system evolves to the desired final ground state, the evolution time must be big enough. The time required depends on the minimum energy difference between the two lowest states of the interpolating Hamiltonian. We are unable to estimate this gap in general. We give some special symmetric cases of the satisfiability problem where the symmetry allows us to estimate the gap and we show that, in these cases, our algorithm runs in polynomial time.Comment: 24 pages, 12 figures, LaTeX, amssymb,amsmath, BoxedEPS packages; email to [email protected]

    How many functions can be distinguished with k quantum queries?

    Get PDF
    Suppose an oracle is known to hold one of a given set of D two-valued functions. To successfully identify which function the oracle holds with k classical queries, it must be the case that D is at most 2^k. In this paper we derive a bound for how many functions can be distinguished with k quantum queries.Comment: 5 pages. Lower bound on sorting n items improved to (1-epsilon)n quantum queries. Minor changes to text and corrections to reference

    Intermediate problems in modular circuits satisfiability

    Full text link
    In arXiv:1710.08163 a generalization of Boolean circuits to arbitrary finite algebras had been introduced and applied to sketch P versus NP-complete borderline for circuits satisfiability over algebras from congruence modular varieties. However the problem for nilpotent (which had not been shown to be NP-hard) but not supernilpotent algebras (which had been shown to be polynomial time) remained open. In this paper we provide a broad class of examples, lying in this grey area, and show that, under the Exponential Time Hypothesis and Strong Exponential Size Hypothesis (saying that Boolean circuits need exponentially many modular counting gates to produce boolean conjunctions of any arity), satisfiability over these algebras have intermediate complexity between Ω(2clogh1n)\Omega(2^{c\log^{h-1} n}) and O(2cloghn)O(2^{c\log^h n}), where hh measures how much a nilpotent algebra fails to be supernilpotent. We also sketch how these examples could be used as paradigms to fill the nilpotent versus supernilpotent gap in general. Our examples are striking in view of the natural strong connections between circuits satisfiability and Constraint Satisfaction Problem for which the dichotomy had been shown by Bulatov and Zhuk

    Probabilistic Model Counting with Short XORs

    Full text link
    The idea of counting the number of satisfying truth assignments (models) of a formula by adding random parity constraints can be traced back to the seminal work of Valiant and Vazirani, showing that NP is as easy as detecting unique solutions. While theoretically sound, the random parity constraints in that construction have the following drawback: each constraint, on average, involves half of all variables. As a result, the branching factor associated with searching for models that also satisfy the parity constraints quickly gets out of hand. In this work we prove that one can work with much shorter parity constraints and still get rigorous mathematical guarantees, especially when the number of models is large so that many constraints need to be added. Our work is based on the realization that the essential feature for random systems of parity constraints to be useful in probabilistic model counting is that the geometry of their set of solutions resembles an error-correcting code.Comment: To appear in SAT 1

    The Computational Power of Minkowski Spacetime

    Full text link
    The Lorentzian length of a timelike curve connecting both endpoints of a classical computation is a function of the path taken through Minkowski spacetime. The associated runtime difference is due to time-dilation: the phenomenon whereby an observer finds that another's physically identical ideal clock has ticked at a different rate than their own clock. Using ideas appearing in the framework of computational complexity theory, time-dilation is quantified as an algorithmic resource by relating relativistic energy to an nnth order polynomial time reduction at the completion of an observer's journey. These results enable a comparison between the optimal quadratic \emph{Grover speedup} from quantum computing and an n=2n=2 speedup using classical computers and relativistic effects. The goal is not to propose a practical model of computation, but to probe the ultimate limits physics places on computation.Comment: 6 pages, LaTeX, feedback welcom

    Codeword stabilized quantum codes: algorithm and structure

    Full text link
    The codeword stabilized ("CWS") quantum codes formalism presents a unifying approach to both additive and nonadditive quantum error-correcting codes (arXiv:0708.1021). This formalism reduces the problem of constructing such quantum codes to finding a binary classical code correcting an error pattern induced by a graph state. Finding such a classical code can be very difficult. Here, we consider an algorithm which maps the search for CWS codes to a problem of identifying maximum cliques in a graph. While solving this problem is in general very hard, we prove three structure theorems which reduce the search space, specifying certain admissible and optimal ((n,K,d)) additive codes. In particular, we find there does not exist any ((7,3,3)) CWS code though the linear programming bound does not rule it out. The complexity of the CWS search algorithm is compared with the contrasting method introduced by Aggarwal and Calderbank (arXiv:cs/0610159).Comment: 11 pages, 1 figur

    Adiabatic Quantum Computing with Phase Modulated Laser Pulses

    Full text link
    Implementation of quantum logical gates for multilevel system is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language.Comment: 19 pages, 6 figures, submitted to JOP
    corecore