238 research outputs found

    Stabilisation of BGK modes by relativistic effects

    Get PDF
    Context. We examine plasma thermalisation processes in the foreshock region of astrophysical shocks within a fully kinetic and self-consistent treatment. We concentrate on proton beam driven electrostatic processes, which are thought to play a key role in the beam relaxation and the particle acceleration. Our results have implications for the effectiveness of electron surfing acceleration and the creation of the required energetic seed population for first order Fermi acceleration at the shock front. Aims. We investigate the acceleration of electrons via their interaction with electrostatic waves, driven by the relativistic Buneman instability, in a system dominated by counter-propagating proton beams. Methods. We adopt a kinetic Vlasov-Poisson description of the plasma on a fixed Eulerian grid and observe the growth and saturation of electrostatic waves for a range of proton beam velocities, from 0.15c to 0.9c. Results. We can report a reduced stability of the electrostatic wave (ESW) with increasing non-relativistic beam velocities and an improved wave stability for increasing relativistic beam velocities, both in accordance with previous findings. At the highest beam speeds, we find the system to be stable again for a period of ≈160 plasma periods. Furthermore, the high phase space resolution of the Eulerian Vlasov approach reveals processes that could not be seen previously with PIC simulations. We observe a, to our knowledge, previously unreported secondary electron acceleration mechanism at low beam speeds. We believe that it is the result of parametric couplings to produce high phase velocity ESW’s which then trap electrons, accelerating them to higher energies. This allows electrons in our simulation study to achieve the injection energy required for Fermi acceleration, for beam speeds as low as 0.15c in unmagnetised plasma

    Dense plasma heating by crossing relativistic electron beams

    Get PDF
    Here we investigate, using relativistic fluid theory and Vlasov-Maxwell simulations, the local heating of a dense plasma by two crossing electron beams. Heating occurs as an instability of the electron beams drives Langmuir waves, which couple nonlinearly into damped ion-acoustic waves. Simulations show a factor 2.8 increase in electron kinetic energy with a coupling efficiency of 18%. Our results support applications to the production of warm dense matter and as a driver for inertial fusion plasmas

    Contemporary particle-in-cell approach to laser-plasma modelling

    Get PDF
    Particle-in-cell (PIC) methods have a long history in the study of laser-plasma interactions. Early electromagnetic codes used the Yee staggered grid for field variables combined with a leapfrog EM-field update and the Boris algorithm for particle pushing. The general properties of such schemes are well documented. Modern PIC codes tend to add to these high-order shape functions for particles, Poisson preserving field updates, collisions, ionisation, a hybrid scheme for solid density and high-field QED effects. In addition to these physics packages, the increase in computing power now allows simulations with real mass ratios, full 3D dynamics and multi-speckle interaction. This paper presents a review of the core algorithms used in current laser-plasma specific PIC codes. Also reported are estimates of self-heating rates, convergence of collisional routines and test of ionisation models which are not readily available elsewhere. Having reviewed the status of PIC algorithms we present a summary of recent applications of such codes in laser-plasma physics, concentrating on SRS, short-pulse laser-solid interactions, fast-electron transport, and QED effects

    Vlasov-Maxwell, self-consistent electromagnetic wave emission simulations in the solar corona

    Full text link
    1.5D Vlasov-Maxwell simulations are employed to model electromagnetic emission generation in a fully self-consistent plasma kinetic model for the first time in the solar physics context. The simulations mimic the plasma emission mechanism and Larmor drift instability in a plasma thread that connects the Sun to Earth with the spatial scales compressed appropriately. The effects of spatial density gradients on the generation of electromagnetic radiation are investigated. It is shown that 1.5D inhomogeneous plasma with a uniform background magnetic field directed transverse to the density gradient is aperiodically unstable to Larmor-drift instability. The latter results in a novel effect of generation of electromagnetic emission at plasma frequency. When density gradient is removed (i.e. when plasma becomes stable to Larmor-drift instability) and a lowlow density, super-thermal, hot beam is injected along the domain, in the direction perpendicular to the magnetic field, plasma emission mechanism generates non-escaping Langmuir type oscillations which in turn generate escaping electromagnetic radiation. It is found that in the spatial location where the beam is injected, the standing waves, oscillating at the plasma frequency, are excited. These can be used to interpret the horizontal strips observed in some dynamical spectra. Quasilinear theory predictions: (i) the electron free streaming and (ii) the beam long relaxation time, in accord with the analytic expressions, are corroborated via direct, fully-kinetic simulation. Finally, the interplay of Larmor-drift instability and plasma emission mechanism is studied by considering densedense electron beam in the Larmor-drift unstable (inhomogeneous) plasma. http://www.maths.qmul.ac.uk/~tsiklauri/movie1.mpg * http://www.maths.qmul.ac.uk/~tsiklauri/movie2.mpg * http://www.maths.qmul.ac.uk/~tsiklauri/movie3.mpgComment: Solar Physics (in press, the final, accepted version

    Vlasov code development with inertial confinement fusion applications

    Get PDF
    Experiments probing fundamental laser-plasma interaction physics have demonstrated some interesting and unexpected effects. Scattering from electron plasma waves with frequencies below the electron plasma frequency (called electron acoustic waves) has been observed in addition to conventional parametric scattering. Reflectivities observed in NIF early light experiments on long scale-length plasmas differed considerably from those predicted by existing fluid models. These effects are essentially kinetic in nature. The low frequency modes are supported by the trapping of electrons at low phase velocities and the saturation of instabilities at the intensities provided by the next generation of laser systems, such as NIF, is associated with the trapping of electrons. Numerical simulation of laser plasma interaction, therefore, benefits from an accurate treatment of the particle kinetics, in particular the evolution of the particle distribution functions. The direct solution of the Vlasov equation allows a high resolution, noise-free, representation particle distribution functions. Recent advancements in Vlasov codes, which draw a considerable expertise in the numerical solution of hydrodynamic codes, make such an approach to the simulation of laser plasma interaction viable. Here the development of a one dimensional electromagnetic Vlasov code is outlined. Thecode is applied to realistic laser and plasma parameters characteristic of single hot-spot experiments. Results are in qualitative agreement with experiments displaying both stimulated Raman and stimulated electron acoustic scattering [N. J. Sircombe, T. D. Arber and R. O. Dendy Kinetic effects in Laser-Plasma coupling: Vlasov theory and computations, Submitted to Plasma Physics and Controlled Fusion]. The amplitude of simulated electron acoustic waves is greater than that observed experimentally, and is accompanied by a higher phase velocity. These minor differences may be attributed to the limitations of a one-dimensional collisionless model. Furthermore, the interaction of a Langmuir wave with a density hole is investigated and shown to result in the acceleration of a small population of electrons [N. J. Sircombe, T. D. Arber and R. O. Dendy, Accelerated electron populations formed by Langmuir wave-caviton interactions, Phys. Plasmas, 12, 012303 (2005)]. This acceleration results from wave breaking and is dependent on the parameters of the background density profiles. In addition, pre-acceleration of electrons in supernova remnant shocks is considered as a kinetic problem [N. J. Sircombe, M. E. Dieckmann, P. K. Shukla and T. D. Arber, Stabilisation of BGK modes by relativistic effects, Astronomy and Astrophysics, In Press], [M. E. Dieckmann, N. J. Sircombe, M. Parviainen, P. K. Shukla and R. O. Dendy, Phase speed of electrostatic waves: The critical parameter for efficient electron surfing acceleration, Plasma Phys. Control

    U-Pb zircon geochronology of rocks from west Central Sulawesi, Indonesia: Extension-related metamorphism and magmatism during the early stages of mountain building

    Get PDF
    Sulawesi has generally been interpreted as the product of convergence in the Cretaceous and Cenozoic, and high mountains in west Central Sulawesi have been considered the product of magmatism and metamorphism related to Neogene collision. New SHRIMP and LA-ICP-MS U-Pb zircon dating of metamorphic and granitoid rocks has identified protoliths and sources of melts, and indicates an important role for extension. Schists, gneisses and granitoids have inherited Proterozoic, Paleozoic, Mesozoic and Paleogene zircons. Mesoproterozoic and Triassic age populations are similar to those from the Bird's Head region. Their protoliths included sediments and granitoids interpreted as part of an Australian-origin block. We suggest this rifted from the Australian margin of Gondwana in the Jurassic and accreted to Sundaland to form NW Sulawesi in the Late Cretaceous. Some metamorphic rocks have Cretaceous and/or Late Eocene magmatic zircons indicating metamorphism cannot be older than Late Eocene, and were not Australian-origin basement. Instead, they were metamorphosed in the Neogene after Sula Spur collision and subsequent major extension. Associated magmatism in west Central Sulawesi produced a K-rich shoshonitic (HK) suite in the Middle Miocene to Early Pliocene. A later episode of magmatism in the Late Miocene to Pliocene formed mainly shoshonitic to high-K calc-alkaline (CAK) rocks. I-type and silica-rich I-type granitoids and diorites of the CAK suite record a widespread short interval of magmatism between 8.5 and 4. Ma. Inherited zircon ages indicate the I-type CAK rocks were the product of partial melting of the HK suite. S-type CAK magmatism between c. 5 and 2.5. Ma and zircon rim ages from gneisses record contemporaneous metamorphism that accompanied extension. Despite its position in a convergent setting in Indonesia, NW Sulawesi illustrates the importance of melting and metamorphism in an extensional setting during the early stages of mountain building

    Deciphering a Multipeak Event in a Noncomplex Set of Detrital Zircon U–Pb Ages

    Full text link

    Dense plasma heating by crossing relativistic electron beams

    Get PDF
    Here we investigate, using relativistic fluid theory and Vlasov-Maxwell simulations, the local heating of a dense plasma by two crossing electron beams. Heating occurs as an instability of the electron beams drives Langmuir waves which couple nonlinearly into damped ion-acoustic waves. Simulations show a factor 2.8 increase in electron kinetic energy with a coupling efficiency of 18%. Our results support applications to the production of warm dense matter and as a driver for inertial fusion plasmas
    corecore