17 research outputs found
Effect of dietary fiber, genetic strain and age on the digestive metabolism of broiler chickens
In this study, 360 male broilers, out of which 240 of a fast-growing strain (Cobb500), and 120 of a slow-growing strain (Label Rouge), were used to evaluate the effect of dietary fiber on digesta transit time and digestive metabolism during the period of 1 to 42 days of age. A completely randomized experimental design with a 3x2 factorial arrangement was applied, consisting of three groups of birds (slow-growing – SG; fast-growing fed ad libitum – FGAL; and fast-growing pair-fed with SG broilers – FGPF) and two iso-protein diets (a 3100 kcal ME/kg low-fiber diet –LFD- and a 2800 kcal ME/ kg high-fiber diet –HFD- with 14% wheat bran and 4% oat hulls). HFD-fed birds presented lower ME retention (p < 0.001) and lower dry matter metabolizability (DMM) (p < 0.001), which is possibly related to the shorter digesta transit time observed in these birds (p < 0.001). DMM was reduced with age, whereas metabolizable energy remained almost constant (p < 0.001) independently of strain. This may be related to the increase in feed intake as birds age. The slowgrowing strain did not present better utilization of the high-fiber diet as compared to the fast-growing strain in none of the analyzed ages, even though showing a significant better use of fiber and dietary energy from 31 days of age
Facilitating arrhythmia simulation: the method of quantitative cellular automata modeling and parallel running
BACKGROUND: Many arrhythmias are triggered by abnormal electrical activity at the ionic channel and cell level, and then evolve spatio-temporally within the heart. To understand arrhythmias better and to diagnose them more precisely by their ECG waveforms, a whole-heart model is required to explore the association between the massively parallel activities at the channel/cell level and the integrative electrophysiological phenomena at organ level. METHODS: We have developed a method to build large-scale electrophysiological models by using extended cellular automata, and to run such models on a cluster of shared memory machines. We describe here the method, including the extension of a language-based cellular automaton to implement quantitative computing, the building of a whole-heart model with Visible Human Project data, the parallelization of the model on a cluster of shared memory computers with OpenMP and MPI hybrid programming, and a simulation algorithm that links cellular activity with the ECG. RESULTS: We demonstrate that electrical activities at channel, cell, and organ levels can be traced and captured conveniently in our extended cellular automaton system. Examples of some ECG waveforms simulated with a 2-D slice are given to support the ECG simulation algorithm. A performance evaluation of the 3-D model on a four-node cluster is also given. CONCLUSIONS: Quantitative multicellular modeling with extended cellular automata is a highly efficient and widely applicable method to weave experimental data at different levels into computational models. This process can be used to investigate complex and collective biological activities that can be described neither by their governing differentiation equations nor by discrete parallel computation. Transparent cluster computing is a convenient and effective method to make time-consuming simulation feasible. Arrhythmias, as a typical case, can be effectively simulated with the methods described
Effect of diet dilution ratio at early age on growth performance, carcass characteristics and hepatic lipogenesis of Pekin ducks
Wild bonobos host geographically restricted malaria parasites including a putative new <i>Laverania</i> species
Malaria parasites, though widespread among wild chimpanzees and gorillas, have not been detected in bonobos. Here, we show that wild-living bonobos are endemically Plasmodium infected in the eastern-most part of their range. Testing 1556 faecal samples from 11 field sites, we identify high prevalence Laverania infections in the Tshuapa-Lomami-Lualaba (TL2) area, but not at other locations across the Congo. TL2 bonobos harbour P. gaboni, formerly only found in chimpanzees, as well as a potential new species, Plasmodium lomamiensis sp. nov. Rare co-infections with non-Laverania parasites were also observed. Phylogenetic relationships among Laverania species are consistent with co-divergence with their gorilla, chimpanzee and bonobo hosts, suggesting a timescale for their evolution. The absence of Plasmodium from most field sites could not be explained by parasite seasonality, nor by bonobo population structure, diet or gut microbiota. Thus, the geographic restriction of bonobo Plasmodium reflects still unidentified factors that likely influence parasite transmission
