815 research outputs found
SEARCH FOR GRAVITATIONALLY REDSHIFTED 2.2 MEV LINE FROM 4U 1820-30
We have analyzed 1.7 Ms of the INTEGRAL data of the Low Mass X-Ray Binary (LMXB) 4U 1820-30 and searched for the redshifted 2.2 MeV neutron capture gamma-ray line. This source is unique in that it is
thought to be accreting pure Helium and might be a powerful 2.2 MeV line source. If detected, this line
would strongly constrain the neutron star equation of state, motivating this search. The line is expected to be redshifted to 1.30-1.72 MeV so we scanned the 1-2 MeV region. Although we failed to detect the redshifted 2.2 MeV line, mainly due to the intense background noise to which INTEGRAL is exposed, we placed upper limits on the source’s flux for different line widths. We plan to do analysis on the rest of the data (over 8 Ms) in the future
Two Phase Description Logic Reasoning for Efficient Information Retrieval
Description Logics are used more and more frequently for knowledge
representation, creating an increasing demand for efficient automated
DL reasoning. However, the existing implementations are inefficient in
the presence of large amounts of data. This paper summarizes the
results in transforming DL axioms to a set of function-free clauses of
first-order logic which can be used for efficient, query oriented data
reasoning. The described method has been implemented in a module of
the DLog reasoner openly available on SourceForge to download
OWL-POLAR : semantic policies for agent reasoning
The original publication is available at www.springerlink.comPostprin
A Semantic Model for Enhancing Network Services Management and Auditing
The road toward ubiquity, heterogeneity and virtualization of network services and resources urges for a formal and systematic approach to network management tasks. In particular, the semantic characterization and modeling of services provided to users assume an essential role in fostering autonomic service management, service negotiation and auditing.
This paper is centered on the definition of an ontology for multiservice IP networks which intends to address multiple service management goals, namely: (i) to foster client and service provider interoperability; (ii) to manage network service contracts, facilitating the dynamic negotiation between clients and ISPs; (iii) to access and query SLA/SLSs data on an individual or aggregated basis to assist service provisioning in the network; and (iv) to sustain service monitoring and auditing. In order to take full advantage of the proposed semantic model, a service model API is provided to allow service management platforms to access the ontological contents. This ontological development also takes advantage of SWRL to discover new knowledge, enriching the possibilities of systems described using this support
Ontology: A Linked Data Hub for Mathematics
In this paper, we present an ontology of mathematical knowledge concepts that
covers a wide range of the fields of mathematics and introduces a balanced
representation between comprehensive and sensible models. We demonstrate the
applications of this representation in information extraction, semantic search,
and education. We argue that the ontology can be a core of future integration
of math-aware data sets in the Web of Data and, therefore, provide mappings
onto relevant datasets, such as DBpedia and ScienceWISE.Comment: 15 pages, 6 images, 1 table, Knowledge Engineering and the Semantic
Web - 5th International Conferenc
Get my pizza right: Repairing missing is-a relations in ALC ontologies (extended version)
With the increased use of ontologies in semantically-enabled applications,
the issue of debugging defects in ontologies has become increasingly important.
These defects can lead to wrong or incomplete results for the applications.
Debugging consists of the phases of detection and repairing. In this paper we
focus on the repairing phase of a particular kind of defects, i.e. the missing
relations in the is-a hierarchy. Previous work has dealt with the case of
taxonomies. In this work we extend the scope to deal with ALC ontologies that
can be represented using acyclic terminologies. We present algorithms and
discuss a system
Greenhouse gas emission factors associated with rewetting of organic soils
Drained organic soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils may reduce GHG emissions and could also create suitable conditions for return of the carbon (C) sink function characteristic of undrained organic soils. In this article we expand on the work relating to rewetted organic soils that was carried out for the 2014 Intergovernmental Panel on Climate Change (IPCC) Wetlands Supplement. We describe the methods and scientific approach used to derive the Tier 1 emission factors (the rate of emission per unit of activity) for the full suite of GHG and waterborne C fluxes associated with rewetting of organic soils. We recorded a total of 352 GHG and waterborne annual flux data points from an extensive literature search and these were disaggregated by flux type (i.e. CO2, CH4, N2O and DOC), climate zone and nutrient status. Our results showed fundamental differences between the GHG dynamics of drained and rewetted organic soils and, based on the 100 year global warming potential of each gas, indicated that rewetting of drained organic soils leads to: net annual removals of CO2 in the majority of organic soil classes; an increase in annual CH4 emissions; a decrease in N2O and DOC losses; and a lowering of net GHG emissions. Data published since the Wetlands Supplement (n = 58) generally support our derivations. Significant data gaps exist, particularly with regard to tropical organic soils, DOC and N2O. We propose that the uncertainty associated with our derivations could be significantly reduced by the development of country specific emission factors that could in turn be disaggregated by factors such as vegetation composition, water table level, time since rewetting and previous land use history
Analytic Metaphysics versus Naturalized Metaphysics: The Relevance of Applied Ontology
The relevance of analytic metaphysics has come under criticism: Ladyman & Ross, for instance, have suggested do discontinue the field. French & McKenzie have argued in defense of analytic metaphysics that it develops tools that could turn out to be useful for philosophy of physics. In this article, we show first that this heuristic defense of metaphysics can be extended to the scientific field of applied ontology, which uses constructs from analytic metaphysics. Second, we elaborate on a parallel by French & McKenzie between mathematics and metaphysics to show that the whole field of analytic metaphysics, being useful not only for philosophy but also for science, should continue to exist as a largely autonomous field
Flexible provisioning of Web service workflows
Web services promise to revolutionise the way computational resources and business processes are offered and invoked in open, distributed systems, such as the Internet. These services are described using machine-readable meta-data, which enables consumer applications to automatically discover and provision suitable services for their workflows at run-time. However, current approaches have typically assumed service descriptions are accurate and deterministic, and so have neglected to account for the fact that services in these open systems are inherently unreliable and uncertain. Specifically, network failures, software bugs and competition for services may regularly lead to execution delays or even service failures. To address this problem, the process of provisioning services needs to be performed in a more flexible manner than has so far been considered, in order to proactively deal with failures and to recover workflows that have partially failed. To this end, we devise and present a heuristic strategy that varies the provisioning of services according to their predicted performance. Using simulation, we then benchmark our algorithm and show that it leads to a 700% improvement in average utility, while successfully completing up to eight times as many workflows as approaches that do not consider service failures
Answering SPARQL queries over databases under OWL 2 QL entailment regime
We present an extension of the ontology-based data access platform Ontop that supports answering SPARQL queries under the OWL 2 QL direct semantics entailment regime for data instances stored in relational databases. On the theoretical side, we show how any input SPARQL query, OWL 2 QL ontology and R2RML mappings can be rewritten to an equivalent SQL query solely over the data. On the practical side, we present initial experimental results demonstrating that by applying the Ontop technologies—the tree-witness query rewriting, T-mappings compiling R2RML mappings with ontology hierarchies, and T-mapping optimisations using SQL expressivity and database integrity
constraints—the system produces scalable SQL queries
- …
