93 research outputs found

    Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome

    Get PDF
    This work was funded by Wellcome Senior Fellowship 095062, Wellcome Trust grants 094090, 099149 and 097945. ALH was funded by an EMBO long term fellowship ALTF 380–2015 co-funded by the European Commission (LTFCOFUND2013, GA-2013–609409).ATP-dependent chromatin remodelling proteins represent a diverse family of proteins that share ATPase domains that are adapted to regulate protein-DNA interactions. Here, we present structures of the Saccharomyces cerevisiae Chd1 protein engaged with nucleosomes in the presence of the transition state mimic ADP-beryllium fluoride. The path of DNA strands through the ATPase domains indicates the presence of contacts conserved with single strand translocases and additional contacts with both strands that are unique to Snf2 related proteins. The structure provides connectivity between rearrangement of ATPase lobes to a closed, nucleotide bound state and the sensing of linker DNA. Two turns of linker DNA are prised off the surface of the histone octamer as a result of Chd1 binding, and both the histone H3 tail and ubiquitin conjugated to lysine 120 are re-orientated towards the unravelled DNA. This indicates how changes to nucleosome structure can alter the way in which histone epitopes are presented.Publisher PDFPeer reviewe

    Single-Molecule Localization Microscopy Reconstruction Using Noise2Noise for Super-Resolution Imaging of Actin Filaments

    Get PDF
    Single-molecule localization microscopy (SMLM) is a super-resolution imaging technique developed to image structures smaller than the diffraction limit. This modality results in sparse and non-uniform sets of localized blinks that need to be reconstructed to obtain a super-resolution representation of a tissue. In this paper, we explore the use of the Noise2Noise (N2N) paradigm to reconstruct the SMLM images. Noise2Noise is an image denoising technique where a neural network is trained with only pairs of noisy realizations of the data instead of using pairs of noisy/clean images, as performed with Noise2Clean (N2C). Here we have adapted Noise2Noise to the 2D SMLM reconstruction problem, exploring different pair creation strategies (fixed and dynamic). The approach was applied to synthetic data and to real 2D SMLM data of actin filaments. This revealed that N2N can achieve reconstruction performances close to the Noise2Clean training strategy, without having access to the super-resolution images. This could open the way to further improvement in SMLM acquisition speed and reconstruction performance

    Two-colour live-cell nanoscale imaging of intracellular targets.

    Get PDF
    Stimulated emission depletion (STED) nanoscopy allows observations of subcellular dynamics at the nanoscale. Applications have, however, been severely limited by the lack of a versatile STED-compatible two-colour labelling strategy for intracellular targets in living cells. Here we demonstrate a universal labelling method based on the organic, membrane-permeable dyes SiR and ATTO590 as Halo and SNAP substrates. SiR and ATTO590 constitute the first suitable dye pair for two-colour STED imaging in living cells below 50 nm resolution. We show applications with mitochondria, endoplasmic reticulum, plasma membrane and Golgi-localized proteins, and demonstrate continuous acquisition for up to 3 min at 2-s time resolution

    Disparity in the DNA translocase domains of SWI/SNF and ISW2

    Get PDF
    An ATP-dependent DNA translocase domain consisting of seven conserved motifs is a general feature of all ATP-dependent chromatin remodelers. While motifs on the ATPase domains of the yeast SWI/SNF and ISWI families of remodelers are highly conserved, the ATPase domains of these complexes appear not to be functionally interchangeable. We found one reason that may account for this is the ATPase domains interact differently with nucleosomes even though both associate with nucleosomal DNA 17–18 bp from the dyad axis. The cleft formed between the two lobes of the ISW2 ATPase domain is bound to nucleosomal DNA and Isw2 associates with the side of nucleosomal DNA away from the histone octamer. The ATPase domain of SWI/SNF binds to the same region of nucleosomal DNA, but is bound outside of the cleft region. The catalytic subunit of SWI/SNF also appears to intercalate between the DNA gyre and histone octamer. The altered interactions of SWI/SNF with DNA are specific to nucleosomes and do not occur with free DNA. These differences are likely mediated through interactions with the histone surface. The placement of SWI/SNF between the octamer and DNA could make it easier to disrupt histone–DNA interactions

    The Yin and Yang of Yeast Transcription: Elements of a Global Feedback System between Metabolism and Chromatin

    Get PDF
    When grown in continuous culture, budding yeast cells tend to synchronize their respiratory activity to form a stable oscillation that percolates throughout cellular physiology and involves the majority of the protein-coding transcriptome. Oscillations in batch culture and at single cell level support the idea that these dynamics constitute a general growth principle. The precise molecular mechanisms and biological functions of the oscillation remain elusive. Fourier analysis of transcriptome time series datasets from two different oscillation periods (0.7 h and 5 h) reveals seven distinct co-expression clusters common to both systems (34% of all yeast ORF), which consolidate into two superclusters when correlated with a compilation of 1,327 unrelated transcriptome datasets. These superclusters encode for cell growth and anabolism during the phase of high, and mitochondrial growth, catabolism and stress response during the phase of low oxygen uptake. The promoters of each cluster are characterized by different nucleotide contents, promoter nucleosome configurations, and dependence on ATP-dependent nucleosome remodeling complexes. We show that the ATP:ADP ratio oscillates, compatible with alternating metabolic activity of the two superclusters and differential feedback on their transcription via activating (RSC) and repressive (Isw2) types of promoter structure remodeling. We propose a novel feedback mechanism, where the energetic state of the cell, reflected in the ATP:ADP ratio, gates the transcription of large, but functionally coherent groups of genes via differential effects of ATP-dependent nucleosome remodeling machineries. Besides providing a mechanistic hypothesis for the delayed negative feedback that results in the oscillatory phenotype, this mechanism may underpin the continuous adaptation of growth to environmental conditions

    Unzip Single Protein Zippers using Optical Tweezers

    Get PDF

    Low Temperature Synthesis of Silicon Oxide Nanowires

    Get PDF
    AbstractSilicon Nanowires (SiNWs) have many potential applications that include diodes, transistors, logic gates, circuitry, and sensors. SiNWs also open the possibility for integrating optoelectronics with microelectronics, since silicon has semiconducting properties and amorphous silicon nanowires have been shown to emit blue light. It has been demonstrated that SiNWs have tunable electrical properties, depending on the dopant used. With such a range of applications, the ability to mass-produce silicon nanowires simply and easily with no other source of silicon needed other than the substrate itself will prove very useful. Such methods have previously been reported, but our method involves production of the SiNWs at a lower temperature than those widely observed. A (100) silicon substrate was cleaned for five minutes each in ethanol followed by acetone. Films with thicknesses of less than 20 nm of either gold or 60/40 gold/palladium were deposited on the substrate through physical vapor deposition to serve as the growth center for the SiNWs. The samples were placed in a furnace and annealed to 900° C, under a 1500 sccm flow of argon at atmospheric pressure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for characterization of the SiNWs. The resulting SiNWs were amorphous in structure and very convoluted, with lengths on the order of tens of microns, diameters of 40 nm and a bed thickness of approximately 10 m. The effect of varying gold concentration, annealing time, temperature, and gas flow rate were then investigated. The results, which will be discussed in further detail, indicate that adjusting these parameters allows for control over the length, thickness, density, and morphology of the nanowires.</jats:p
    corecore