3,294 research outputs found
Improving Mobile Video Streaming with Mobility Prediction and Prefetching in Integrated Cellular-WiFi Networks
We present and evaluate a procedure that utilizes mobility and throughput
prediction to prefetch video streaming data in integrated cellular and WiFi
networks. The effective integration of such heterogeneous wireless technologies
will be significant for supporting high performance and energy efficient video
streaming in ubiquitous networking environments. Our evaluation is based on
trace-driven simulation considering empirical measurements and shows how
various system parameters influence the performance, in terms of the number of
paused video frames and the energy consumption; these parameters include the
number of video streams, the mobile, WiFi, and ADSL backhaul throughput, and
the number of WiFi hotspots. Also, we assess the procedure's robustness to time
and throughput variability. Finally, we present our initial prototype that
implements the proposed approach.Comment: 7 pages, 15 figure
Efficient Proactive Caching for Supporting Seamless Mobility
We present a distributed proactive caching approach that exploits user
mobility information to decide where to proactively cache data to support
seamless mobility, while efficiently utilizing cache storage using a congestion
pricing scheme. The proposed approach is applicable to the case where objects
have different sizes and to a two-level cache hierarchy, for both of which the
proactive caching problem is hard. Additionally, our modeling framework
considers the case where the delay is independent of the requested data object
size and the case where the delay is a function of the object size. Our
evaluation results show how various system parameters influence the delay gains
of the proposed approach, which achieves robust and good performance relative
to an oracle and an optimal scheme for a flat cache structure.Comment: 10 pages, 9 figure
Recommended from our members
Biomechanical Computed Tomography analysis (BCT) for clinical assessment of osteoporosis.
The surgeon general of the USA defines osteoporosis as "a skeletal disorder characterized by compromised bone strength, predisposing to an increased risk of fracture." Measuring bone strength, Biomechanical Computed Tomography analysis (BCT), namely, finite element analysis of a patient's clinical-resolution computed tomography (CT) scan, is now available in the USA as a Medicare screening benefit for osteoporosis diagnostic testing. Helping to address under-diagnosis of osteoporosis, BCT can be applied "opportunistically" to most existing CT scans that include the spine or hip regions and were previously obtained for an unrelated medical indication. For the BCT test, no modifications are required to standard clinical CT imaging protocols. The analysis provides measurements of bone strength as well as a dual-energy X-ray absorptiometry (DXA)-equivalent bone mineral density (BMD) T-score at the hip and a volumetric BMD of trabecular bone at the spine. Based on both the bone strength and BMD measurements, a physician can identify osteoporosis and assess fracture risk (high, increased, not increased), without needing confirmation by DXA. To help introduce BCT to clinicians and health care professionals, we describe in this review the currently available clinical implementation of the test (VirtuOst), its application for managing patients, and the underlying supporting evidence; we also discuss its main limitations and how its results can be interpreted clinically. Together, this body of evidence supports BCT as an accurate and convenient diagnostic test for osteoporosis in both sexes, particularly when used opportunistically for patients already with CT. Biomechanical Computed Tomography analysis (BCT) uses a patient's CT scan to measure both bone strength and bone mineral density at the hip or spine. Performing at least as well as DXA for both diagnosing osteoporosis and assessing fracture risk, BCT is particularly well-suited to "opportunistic" use for the patient without a recent DXA who is undergoing or has previously undergone CT testing (including hip or spine regions) for an unrelated medical condition
The impact of interference on the performance of a multi-path metropolitan wireless mesh network
Wireless mesh networks (WMNs) have attracted much attention lately for providing efficiently wireless services with high quality of service (QoS). Metropolitan WMNs are a low-cost solution for providing broadband wireless internet access in large areas. One of the fundamental issues of wireless communications is interference. In WMNs interference can be caused by simultaneous transmissions at links internal to the mesh network or by external sources. In this work we perform extensive measurements in a multi-radio metropolitan WMN deployed in the city of Heraklion, Greece. The basic goal is to investigate the impact of interference on the performance of the multi-path WMN. Towards that goal, we perform measurements with FTP, video streaming and raw data traffic for two scenarios, one with an efficient channel assignment (CA) that accounts for interference and another with a random CA that results in high internal and external interference in the network. The results prove that interference creates severe performance degradation, with regards to high delay, high packet losses, low throughput and low signal-to-interference and noise ratio (SINR). As a result, the metropolitan WMN becomes unable to support multi-path flows and demanding applications with an acceptable QoS. © 2011 IEEE
Edge-ICN and its application to the Internet of Things
While research on Information-Centric Networking (ICN) flourishes, its
adoption seems to be an elusive goal. In this paper we propose Edge-ICN: a
novel approach for deploying ICN in a single large network, such as the network
of an Internet Service Provider. Although Edge-ICN requires nothing beyond an
SDN-based network supporting the OpenFlow protocol, with ICN-aware nodes only
at the edges of the network, it still offers the same benefits as a clean-slate
ICN architecture but without the deployment hassles. Moreover, by proxying
legacy traffic and transparently forwarding it through the Edge-ICN nodes, all
existing applications can operate smoothly, while offering significant
advantages to applications such as native support for scalable anycast,
multicast, and multi-source forwarding. In this context, we show how the
proposed functionality at the edge of the network can specifically benefit
CoAP-based IoT applications. Our measurements show that Edge-ICN induces on
average the same control plane overhead for name resolution as a centralized
approach, while also enabling IoT applications to build on anycast, multicast,
and multi-source forwarding primitives.Comment: IFIP Networking Workshops, IFIP, 201
Three rare cases of anthrax arising from the same source
Anthrax is an acute bacterial infection caused by Bacillus anthracis. Humans become infected under natural conditions by contact with infected animals or contaminated animal products. About 95% of human anthrax is cutaneous and 5% respiratory. Gastrointestinal anthrax is very rare, and has been reported in less than 1% of all cases. Anthrax meningitis is a rare complication of any of the other three forms of disease. We report three rare cases of anthrax (gastrointestinal, oropharyngeal and meningitis) arising from the same source. The three patients were from a single family and were admitted with different clinical pictures after the ingestion of half-cooked meat from a sick sheep. These cases emphasize the need for awareness of anthrax in the differential diagnosis in areas where the disease remains endemic
- …
