145 research outputs found

    Probabilistic movement primitives for coordination of multiple human–robot collaborative tasks

    Get PDF
    This paper proposes an interaction learning method for collaborative and assistive robots based on movement primitives. The method allows for both action recognition and human–robot movement coordination. It uses imitation learning to construct a mixture model of human–robot interaction primitives. This probabilistic model allows the assistive trajectory of the robot to be inferred from human observations. The method is scalable in relation to the number of tasks and can learn nonlinear correlations between the trajectories that describe the human–robot interaction. We evaluated the method experimentally with a lightweight robot arm in a variety of assistive scenarios, including the coordinated handover of a bottle to a human, and the collaborative assembly of a toolbox. Potential applications of the method are personal caregiver robots, control of intelligent prosthetic devices, and robot coworkers in factories

    Artificial Cognition for Social Human-Robot Interaction: An Implementation

    Get PDF
    Human–Robot Interaction challenges Artificial Intelligence in many regards: dynamic, partially unknown environments that were not originally designed for robots; a broad variety of situations with rich semantics to understand and interpret; physical interactions with humans that requires fine, low-latency yet socially acceptable control strategies; natural and multi-modal communication which mandates common-sense knowledge and the representation of possibly divergent mental models. This article is an attempt to characterise these challenges and to exhibit a set of key decisional issues that need to be addressed for a cognitive robot to successfully share space and tasks with a human. We identify first the needed individual and collaborative cognitive skills: geometric reasoning and situation assessment based on perspective-taking and affordance analysis; acquisition and representation of knowledge models for multiple agents (humans and robots, with their specificities); situated, natural and multi-modal dialogue; human-aware task planning; human–robot joint task achievement. The article discusses each of these abilities, presents working implementations, and shows how they combine in a coherent and original deliberative architecture for human–robot interaction. Supported by experimental results, we eventually show how explicit knowledge management, both symbolic and geometric, proves to be instrumental to richer and more natural human–robot interactions by pushing for pervasive, human-level semantics within the robot\u27s deliberative system

    Multi-project scheduling under mode duration uncertainties

    Get PDF
    In this study, we investigate the multi-mode multi-project resource constrained project scheduling problem under uncertainty. We assume a multi-objective setting with 2 objectives : minimizing multi-project makespan and minimizing total sum of absolute deviations of scheduled starting times of activities from their earliest starting times found through simulation. We develop two multi-objective genetic algorithm (MOGA) solution approaches. The first one, called decomposition MOGA, decomposes the problem into two-stages and the other one, called holistic MOGA, combines all activities of each project into one big network and does not require that activities of a project are scheduled consecutively as a benchmark. Decomposition MOGA starts with an initial step of a 2-stage decomposition where each project is reduced to a single macro-activity by systematicaly using artificial budget values and expected project durations. Generated macro-activities may have one or more processing modes called macro-modes. Deterministic macromodes are transformed into random variables by generating disruption cases via simulation. For fitness computation of each MOGA two similar 2-stage heuristics are developed. In both heuristics, a minimum target makespan of overall projects is determined. In the second stage minimum total sum of absolute deviations model is solved in order to find solution robust starting times of activities for each project. The objective value of this model is taken as the second objective of the MOGA's. Computational studies measuring performance of the two proposed solution approaches are performed for different datasets in different parameter settings. When non-dominated solutions of each approach are combined to a final population, overall results show that a larger ratio of these solutions are genetared by decomposition MOGA. Additionally, required computational effort for decompositon MOGA is much less than holistic approach as expected

    Social Cognition for Human-Robot Symbiosis—Challenges and Building Blocks

    Get PDF
    The next generation of robot companions or robot working partners will need to satisfy social requirements somehow similar to the famous laws of robotics envisaged by Isaac Asimov time ago (Asimov, 1942). The necessary technology has almost reached the required level, including sensors and actuators, but the cognitive organization is still in its infancy and is only partially supported by the current understanding of brain cognitive processes. The brain of symbiotic robots will certainly not be a “positronic” replica of the human brain: probably, the greatest part of it will be a set of interacting computational processes running in the cloud. In this article, we review the challenges that must be met in the design of a set of interacting computational processes as building blocks of a cognitive architecture that may give symbiotic capabilities to collaborative robots of the next decades: (1) an animated body-schema; (2) an imitation machinery; (3) a motor intentions machinery; (4) a set of physical interaction mechanisms; and (5) a shared memory system for incremental symbiotic development. We would like to stress that our approach is totally un-hierarchical: the five building blocks of the shared cognitive architecture are fully bi-directionally connected. For example, imitation and intentional processes require the “services” of the animated body schema which, on the other hand, can run its simulations if appropriately prompted by imitation and/or intention, with or without physical interaction. Successful experiences can leave a trace in the shared memory system and chunks of memory fragment may compete to participate to novel cooperative actions. And so on and so forth. At the heart of the system is lifelong training and learning but, different from the conventional learning paradigms in neural networks, where learning is somehow passively imposed by an external agent, in symbiotic robots there is an element of free choice of what is worth learning, driven by the interaction between the robot and the human partner. The proposed set of building blocks is certainly a rough approximation of what is needed by symbiotic robots but we believe it is a useful starting point for building a computational framework

    Manipulation planning under changing external forces

    Get PDF
    This paper presents a planner that enables robots to manipulate objects under changing external forces. Particularly, we focus on the scenario where a human applies a sequence of forceful operations, e.g. cutting and drilling, on an object that is held by a robot. The planner produces an efficient manipulation plan by choosing stable grasps on the object, by intelligently deciding when the robot should change its grasp on the object as the external forces change, and by choosing subsequent grasps such that they minimize the number of regrasps required in the long-term. Furthermore, as it switches from one grasp to the other, the planner solves the bimanual regrasping in the air by using an alternating sequence of bimanual and unimanual grasps. We also present a conic formulation to address force uncertainties inherent in human-applied external forces, using which the planner can robustly assess the stability of a grasp configuration without sacrificing planning efficiency. We provide a planner implementation on a dual-arm robot and present a variety of simulated and real human-robot experiments to show the performance of our planner
    corecore