1,841 research outputs found
The Dynamic Effects of Subconscious Goal Pursuit on Resource Allocation, Task Performance, and Goal Abandonment
We test two potential boundary conditions for the effects of subconscious goals—the nature of the goal that is activated (achievement vs. underachievement) and conscious goal striving. Subconscious achievement goals increase the amount of time devoted to skill acquisition, and this increase in resource allocation leads to higher performance when conscious goals are neutral. However, specific conscious goals undermine the performance benefits of subconscious achievement goals. Subconscious underachievement goals cause individuals to abandon goal pursuit and this effect is mediated by task performance. Difficult conscious goals neutralize the detrimental effects of subconscious underachievement goals but only if implemented before performance is undermined. Overall, these results suggest that subconscious achievement goals facilitate task performance, subconscious underachievement goals trigger goal abandonment, and difficult conscious goals moderate these effects depending on the level of resource allocation and timing of goal implementation
A Multilevel Analysis of the Effect of Prompting Self-Regulation in Technology-Delivered Instruction
We used a within-subjects design and multilevel modeling in two studies to examine the effect of prompting self-regulation, an intervention designed to improve learning from technology-delivered instruction. The results of two studies indicate trainees who were prompted to self-regulate gradually improved their knowledge and performance over time, relative to the control condition. In addition, Study 2 demonstrated that trainees’ cognitive ability and self-efficacy moderated the effect of the prompts. Prompting self-regulation resulted in stronger learning gains over time for trainees with higher ability or higher self-efficacy. Overall, the two studies demonstrate that prompting self-regulation had a gradual, positive effect on learning, and the strength of the effect increased as trainees progressed through training. The results are consistent with theory suggesting self-regulation is a cyclical process that has a gradual effect on learning and highlight the importance of using a within-subjects design in self-regulation. research
Personalización del aprendizaje de los alumnos de la educación media mediante el uso de las tecnologías de la información y de la comunicación (TIC)
Trabajo fin de máster en Tecnologías de Información y Comunicación en Educación y Formació
DeepVoxels: Learning Persistent 3D Feature Embeddings
In this work, we address the lack of 3D understanding of generative neural
networks by introducing a persistent 3D feature embedding for view synthesis.
To this end, we propose DeepVoxels, a learned representation that encodes the
view-dependent appearance of a 3D scene without having to explicitly model its
geometry. At its core, our approach is based on a Cartesian 3D grid of
persistent embedded features that learn to make use of the underlying 3D scene
structure. Our approach combines insights from 3D geometric computer vision
with recent advances in learning image-to-image mappings based on adversarial
loss functions. DeepVoxels is supervised, without requiring a 3D reconstruction
of the scene, using a 2D re-rendering loss and enforces perspective and
multi-view geometry in a principled manner. We apply our persistent 3D scene
representation to the problem of novel view synthesis demonstrating
high-quality results for a variety of challenging scenes.Comment: Video: https://www.youtube.com/watch?v=HM_WsZhoGXw Supplemental
material:
https://drive.google.com/file/d/1BnZRyNcVUty6-LxAstN83H79ktUq8Cjp/view?usp=sharing
Code: https://github.com/vsitzmann/deepvoxels Project page:
https://vsitzmann.github.io/deepvoxels
Ausgangsbedingungen für die Vermarktung von Nachfrageflexibilität : Status-Quo-Analyse und Metastudie
Die vorliegende Arbeit ist Teil des durch das Bundesministerium für Bildung und Forschung geförderten Forschungsprojektes Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung (SynErgie). Ziel des Forschungsprojektes ist die Befähigung der energieintensiven Industrien in Deutschland, die Stromnachfrage dem zunehmend fluktuierenden Stromangebot anzupassen. In der Vergangenheit waren Stromsysteme in der Regel dahingehend ausgelegt, dass die Erzeugungsseite des Marktes an das zeitliche Verhalten des Verbrauchs angepasst war. Durch den verstärkten Ausbau volatiler erneuerbarer Energien unterliegt die Stromerzeugung jedoch unkontrollierbaren, wetterabhängigen Schwankungen, weshalb eine Flexibilisierung des Gesamtsystems zunehmend an Bedeutung gewinnt. Die in SynErgie betrachteten Industrieprozesse stellen dabei eine Teilmenge potenzieller Flexibilisierungsoptionen dar und können zur Lastanpassung an schwankende Erzeugung sowie zur Bereitstellung von Systemdienstleistungen und Entlastung der Netze beitragen. In einem liberalisierten, wettbewerblichen Strommarkt sind im Hinblick auf die Erschließung der Potenziale der Nachfrageflexibilität die marktlichen und regulatorischen Rahmenbedingungen von hoher Relevanz. Diese Studie beschreibt daher zunächst die Grundlagen des Strommarktdesigns und des konstituierenden gesetzlichen Rahmens. Dabei wird stets der Bezug zur Anwendung auf Industrieprozesse genommen und potenzielle Hemmnisse der Partizipation flexibler Nachfrageprozesse aufgearbeitet. Die Analyse bildet den Ausgangspunkt für die folgenden Arbeitspakete im Cluster IV und dient der clusterübergreifenden Information über den Status Quo der Marktstrukturen und regulatorischen Rahmenbedingungen. Neben der systematischen Aufarbeitung des marktlichen Rahmens werden die wissenschaftliche Literatur sowie bereits publizierte Studien zum Thema Nachfrageflexibilität (Demand Side Management und Demand Response) in einer Metastudie analysiert und zusammengefasst
Experimental Investigation of the DLR-F6 Transport Configuration in the National Transonic Facility
An experimental aerodynamic investigation of the DLR (German Aerospace Center) F6 generic transport configuration has been conducted in the NASA NTF (National Transonic Facility) for CFD validation within the framework of the AIAA Drag Prediction Workshop. Force and moment, surface pressure, model deformation, and surface flow visualization data have been obtained at Reynolds numbers of both 3 million and 5 million. Flow-through nacelles and a side-of-body fairing were also investigated on this wing-body configuration. Reynolds number effects on trailing edge separation have been assessed, and the effectiveness of the side-of-body fairing in eliminating a known region of separated flow has been determined. Data obtained at a Reynolds number of 3 million are presented together for comparison with data from a previous wind tunnel investigation in the ONERA S2MA facility. New surface flow visualization capabilities have also been successfully explored and demonstrated in the NTF for the high pressure and moderately low temperature conditions required in this investigation. Images detailing wing surface flow characteristics are presented
3D printing: A qualitative assessment of applications, recent trends and the technology's future potential
Additive manufacturing (AM) or 3D printing is currently one of the most discussed emerging technologies coming to market with a potentially disruptive power. The terms additive manufacturing (AM) and 3D printing describe production processes in which a solid 3D structure is produced layer by layer by the deposition of suitable materials via an additive manufacturing machine. After around 30 years in the making, 3D printing is about to move from being an industrial rapid prototyping technique to becoming a mainstream manufacturing procedure used by industry and consumers alike. However, the question in which area and to which extent this emerging technology will disrupt state of the art practices is far from trivial. The goal of this report on behalf of the Expert Commission of Research and Innovation is threefold: First, to sketch the emerging 3D printing landscape, explore key trends and the technology's potential. Second, to shed light on 3D printing market dynamics and framework conditions both in Germany and in other countries. Third, to translate the findings into recommendations that can serve as a basis for the Expert Commission's policy report
- …
