1,575 research outputs found
Super-Earth Atmospheres: Self-Consistent Gas Accretion and Retention
Some recently discovered short-period Earth to Neptune sized exoplanets
(super Earths) have low observed mean densities which can only be explained by
voluminous gaseous atmospheres. Here, we study the conditions allowing the
accretion and retention of such atmospheres. We self-consistently couple the
nebular gas accretion onto rocky cores and the subsequent evolution of gas
envelopes following the dispersal of the protoplanetary disk. Specifically, we
address mass-loss due to both photo-evaporation and cooling of the planet. We
find that planets shed their outer layers (dozens of percents in mass)
following the disk's dispersal (even without photo-evaporation), and their
atmospheres shrink in a few Myr to a thickness comparable to the radius of the
underlying rocky core. At this stage, atmospheres containing less particles
than the core (equivalently, lighter than a few % of the planet's mass) can be
blown away by heat coming from the cooling core, while heavier atmospheres cool
and contract on a timescale of Gyr at most. By relating the mass-loss timescale
to the accretion time, we analytically identify a Goldilocks region in the
mass-temperature plane in which low-density super Earths can be found: planets
have to be massive and cold enough to accrete and retain their atmospheres,
while not too massive or cold, such that they do not enter runaway accretion
and become gas giants (Jupiters). We compare our results to the observed
super-Earth population and find that low-density planets are indeed
concentrated in the theoretically allowed region. Our analytical and intuitive
model can be used to investigate possible super-Earth formation scenarios.Comment: Updated (refereed) versio
Femtosecond-scale switching based on excited free-carriers
We describe novel optical switching schemes operating at femtosecond time scales by employing free carrier (FC) excitation. Such unprecedented switching times are made possible by spatially patterning the density of the excited FCs. In the first realization, we rely on diffusion, i.e., on the nonlocality of the FC nonlinear response of the semiconductor, to erase the initial FC pattern and, thereby, eliminate the reflectivity of the system. In the second realization, we erase the FC pattern by launching a second pump pulse at a controlled delay. We discuss the advantages and limitations of the proposed approaches and demonstrate their potential applicability for switching ultrashort pulses propagating in silicon waveguides. We show switching efficiencies of up to 50% for 100 fs pump pulses, which is an unusually high level of efficiency for such a short interaction time, a result of the use of the strong FC nonlinearity. Due to limitations of saturation and pattern effects, these schemes can be employed for switching applications that require femtosecond features but standard repetition rates. Such applications include switching of ultrashort pulses, femtosecond spectroscopy (gating), time-reversal of short pulses for aberration compensation, and many more. This approach is also the starting point for ultrafast amplitude modulations and a new route toward the spatio-temporal shaping of short optical pulse
Optimal rotations of deformable bodies and orbits in magnetic fields
Deformations can induce rotation with zero angular momentum where dissipation
is a natural ``cost function''. This gives rise to an optimization problem of
finding the most effective rotation with zero angular momentum. For certain
plastic and viscous media in two dimensions the optimal path is the orbit of a
charged particle on a surface of constant negative curvature with magnetic
field whose total flux is half a quantum unit.Comment: 4 pages revtex, 4 figures + animation in multiframe GIF forma
Cache-conscious scheduling of streaming applications
This paper considers the problem of scheduling streaming applications on uniprocessors in order to minimize the number of cache-misses. Streaming applications are represented as a directed graph (or multigraph), where nodes are computation modules and edges are channels. When a module fires, it consumes some data-items from its input channels and produces some items on its output channels. In addition, each module may have some state (either code or data) which represents the memory locations that must be loaded into cache in order to execute the module. We consider synchronous dataflow graphs where the input and output rates of modules are known in advance and do not change during execution. We also assume that the state size of modules is known in advance.
Our main contribution is to show that for a large and important class of streaming computations, cache-efficient scheduling is essentially equivalent to solving a constrained graph partitioning problem. A streaming computation from this class has a cache-efficient schedule if and only if its graph has a low-bandwidth partition of the modules into components (subgraphs) whose total state fits within the cache, where the bandwidth of the partition is the number of data items that cross intercomponent channels per data item that enters the graph.
Given a good partition, we describe a runtime strategy for scheduling two classes of streaming graphs: pipelines, where the graph consists of a single directed chain, and a fairly general class of directed acyclic graphs (dags) with some additional restrictions. The runtime scheduling strategy consists of adding large external buffers at the input and output edges of each component, allowing each component to be executed many times. Partitioning enables a reduction in cache misses in two ways. First, any items that are generated on edges internal to subgraphs are never written out to memory, but remain in cache. Second, each subgraph is executed many times, allowing the state to be reused.
We prove the optimality of this runtime scheduling for all pipelines and for dags that meet certain conditions on buffer-size requirements. Specifically, we show that with constant-factor memory augmentation, partitioning on these graphs guarantees the optimal number of cache misses to within a constant factor. For the pipeline case, we also prove that such a partition can be found in polynomial time. For the dags we prove optimality if a good partition is provided; the partitioning problem itself is NP-complete.National Science Foundation (U.S.) (Grant CCF-1150036)National Science Foundation (U.S.) (Grant CNS-1017058)National Science Foundation (U.S.) (Grant CCF-0937860)United States-Israel Binational Science Foundation (Grant 2010231
Quasiparticle spectra from a non-empirical optimally-tuned range-separated hybrid density functional
We present a method for obtaining outer valence quasiparticle excitation
energies from a DFT-based calculation, with accuracy that is comparable to that
of many-body perturbation theory within the GW approximation. The approach uses
a range-separated hybrid density functional, with asymptotically exact and
short-range fractional Fock exchange. The functional contains two parameters -
the range separation and the short-range Fock fraction. Both are determined
non-empirically, per system, based on satisfaction of exact physical
constraints for the ionization potential and many-electron self-interaction,
respectively. The accuracy of the method is demonstrated on four important
benchmark organic molecules: perylene, pentacene,
3,4,9,10-perylene-tetracarboxylic-dianydride (PTCDA) and
1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA). We envision that for
finite systems the approach could provide an inexpensive alternative to GW,
opening the door to the study of presently out of reach large-scale systems
Signatures of Inelastic Scattering in Coulomb-Blockade Quantum Dots
We calculate the finite-temperature conductance peak-height distributions in
Coublomb-blockade quantum dots in the limit where the inelastic scattering rate
in the dot is large compared with the mean elastic tunneling rate. The relative
reduction of the standard deviation of the peak-height distribution by a
time-reversal symmetry-breaking magnetic field, which is essentially
temperature-independent in the elastic limit, is enhanced by the inclusion of
inelastic scattering at finite temperature. We suggest this quantity as an
independent experimental probe for inelastic scattering in closed dots.Comment: 4 pages, 3 eps figures, revtex
Chaos Thresholds in finite Fermi systems
The development of Quantum Chaos in finite interacting Fermi systems is
considered. At sufficiently high excitation energy the direct two-particle
interaction may mix into an eigen-state the exponentially large number of
simple Slater-determinant states. Nevertheless, the transition from Poisson to
Wigner-Dyson statistics of energy levels is governed by the effective high
order interaction between states very distant in the Fock space. The concrete
form of the transition depends on the way one chooses to work out the problem
of factorial divergency of the number of Feynman diagrams. In the proposed
scheme the change of statistics has a form of narrow phase transition and may
happen even below the direct interaction threshold.Comment: 9 pages, REVTEX, 2 eps figures. Enlarged versio
- …
