278 research outputs found
Phenomenology of single spin asymmetries in p(transv. polarized)-p -> pion + X
A phenomenological description of single transverse spin effects in
hadron-hadron inclusive processes is proposed, assuming a generalized
factorization scheme and pQCD hard interactions. The transverse momentum, k_T,
of the quarks inside the hadrons and of the hadrons relatively to the
fragmenting quark, is taken into account in distribution and fragmentation
functions, and leads to possible non zero single spin asymmetries. The role of
k_T and spin dependent quark fragmentations -- the so-called Collins effect --
is investigated in details in p(transv. polarized)-p -> pion + X processes: it
is shown how the experimental data could be described, obtaining an explicit
expression for the spin asymmetry of a polarized fragmenting quark, on which
some comments are made. Predictions for other processes, possible further
applications and experimental tests are discussed.Comment: 20+1 pages, LaTeX, 6 eps figures, uses epsfig.sty. Version v2: Some
sentences rephrased and comments added throughout the paper; one reference
added; no changes in results and figures. Final version to be published in
Phys. Rev.
Accessing Transversity in Double-Spin Asymmetries at the BNL-RHIC
We give upper bounds for transverse double-spin asymmetries in polarized
proton-proton collisions by saturating the positivity constraint for the
transversity densities at a low hadronic resolution scale. We consider prompt
photon, jet, pion, and heavy flavor production at the BNL Relativistic Heavy
Ion Collider (RHIC). Estimates of the expected statistical accuracy for such
measurements are presented, taking into account the acceptance of the RHIC
detectors.Comment: 15 pages, LaTeX, 2 figures as eps file
A mechanism for the T-odd pion fragmentation function
We consider a simple rescattering mechanism to calculate a leading twist
-odd pion fragmentation function, a favored candidate for filtering the
transversity properties of the nucleon. We evaluate the single spin azimuthal
asymmetry for a transversely polarized target in semi-inclusive deep inelastic
scattering (for HERMES kinematics). Additionally, we calculate the double
-odd asymmetry in this framework.Comment: 6 pages revtex, 7 eps figures, references added and updated in this
published versio
Updated Report Acceleration of Polarized Protons to 120-150 GeV/c at Fermilab
The SPIN@FERMI collaboration has updated its 1991-95 Reports on the
acceleration of polarized protons in Fermilab's Main Injector, which was
commissioned by Fermilab. This Updated Report summarizes some updated Physics
Goals for a 120-150 GeV/c polarized proton beam. It also contains an updated
discussion of the Modifications and Hardware needed for a polarized beam in the
Main Injector, along with an updated Schedule and Budget.Comment: 30 pages, 12 figure
Double transverse spin asymmetries in vector boson production
We investigate a helicity non-flip double transverse spin asymmetry in vector
boson production in hadron-hadron scattering, which was first considered by
Ralston and Soper at the tree level. It does not involve transversity functions
and in principle also arises in W-boson production for which we present the
expressions. The asymmetry requires observing the transverse momentum of the
vector boson, but it is not suppressed by explicit inverse powers of a large
energy scale. However, as we will show, inclusion of Sudakov factors causes
suppression of the asymmetry, which increases with energy. Moreover, the
asymmetry is shown to be approximately proportional to x_1 g_1(x_1) x_2 \bar
g_1(x_2), which gives rise to additional suppression at small values of the
light cone momentum fractions. This implies that it is negligible for Z or W
production and is mainly of interest for \gamma^* at low energies. We also
compare the asymmetry with other types of double transverse spin asymmetries
and discuss how to disentangle them.Comment: 12 pages, Revtex, 2 Postscript figures, uses aps.sty, epsf.sty;
figures replaced, a few minor other correction
In-medium Yang-Mills equations: a derivation and canonical quantization
The equations for Yang-Mills field in a medium are derived in a linear
approximation with respect to the gauge coupling parameter and the external
field. The obtained equations closely resemble the macroscopic Maxwell
equations. A canonical quantization is performed for a family of Fermi-like
gauges in the case of constant and diagonal (in the group indices) tensors of
electric permittivity and magnetic permeability. The physical subspace is
defined and the gauge field propagator is evaluated for a particular choice of
the gauge. The propagator is applied for evaluation of the cross-section of
ellastic quark scattering in the Born approximation. Possible applications to
Cherenkov-type gluon radiation are commented briefly.Comment: 27 pages, references added, version extended with emphasis on
non-Abelian gauge group impact on medium characteristics. To appear in J.
Phys.
Exploring the Partonic Structure of Hadrons through the Drell-Yan Process
The Drell-Yan process is a standard tool for probing the partonic structure
of hadrons. Since the process proceeds through a quark-antiquark annihilation,
Drell-Yan scattering possesses a unique ability to selectively probe sea
distributions. This review examines the application of Drell-Yan scattering to
elucidating the flavor asymmetry of the nucleon's sea and nuclear modifications
to the sea quark distributions in unpolarized scattering. Polarized beams and
targets add an exciting new dimension to Drell-Yan scattering. In particular,
the two initial-state hadrons give Drell-Yan sensitivity to chirally-odd
transversity distributions.Comment: 23 pages, 9 figures, to appear in J. Phys. G, resubmission corrects
typographical error
Results from 730 kg days of the CRESST-II Dark Matter Search
The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via
elastic scattering off nuclei in CaWO crystals, completed 730 kg days of
data taking in 2011. We present the data collected with eight detector modules,
each with a two-channel readout; one for a phonon signal and the other for
coincidently produced scintillation light. The former provides a precise
measure of the energy deposited by an interaction, and the ratio of
scintillation light to deposited energy can be used to discriminate different
types of interacting particles and thus to distinguish possible signal events
from the dominant backgrounds. Sixty-seven events are found in the acceptance
region where a WIMP signal in the form of low energy nuclear recoils would be
expected. We estimate background contributions to this observation from four
sources: 1) "leakage" from the e/\gamma-band 2) "leakage" from the
\alpha-particle band 3) neutrons and 4) Pb-206 recoils from Po-210 decay. Using
a maximum likelihood analysis, we find, at a high statistical significance,
that these sources alone are not sufficient to explain the data. The addition
of a signal due to scattering of relatively light WIMPs could account for this
discrepancy, and we determine the associated WIMP parameters.Comment: 17 pages, 13 figure
- …
