10 research outputs found

    Development of an experimental model of neurocysticercosis-induced hydrocephalus. Pilot study

    Full text link
    ABSTRACT PURPOSE: To develop an experimental model of neurocysticercosis-induced hydrocephalus METHODS: There were used 17 rats. Ten animals were inoculated with Taenia crassiceps cysts into the subarachnoid. Five animals were injected with 0.1ml of 25% kaolin (a standard solution for the development of experimental hydrocephalus) and two animals were injected with saline. Magnetic resonance imaging (MRI) was used to evaluate enlargement of the ventricles after one or three months of inoculation. Volumetric study was used to quantify the ventricle enlargement. RESULTS: Seven of the 10 animals in the cyst group developed hydrocephalus, two of them within one month and five within three months after inoculation. Three of the five animals in the kaolin group had hydrocephalus and none in the saline group. Ventricle volumes were significantly higher in the 3-months MRI cyst subgroup than in the 1-month cyst subgroup. Differences between cyst subgroups and kaolin group did not reach statistical significance. CONCLUSION: The developed model may reproduce the human condition of neurocysticercosis-related hydrocephalus, which exhibits a slowly progressive chronic course

    Exploring the Efficacy of Endoscopic Ventriculostomy for Hydrocephalus Treatment via a Multicompartmental Poroelastic Model of CSF Transport: A Computational Perspective

    Get PDF
    This study proposes the implementation of a Multiple-Network Poroelastic Theory (MPET) model coupled with finite-volume computational fluid dynamics for the purpose of studying, in detail, the effects of obstructing CSF transport within an anatomically accurate cerebral environment. The MPET representation allows the investigation of fluid transport between CSF, brain parenchyma and cerebral blood, in an integral and comprehensive manner. A key novelty in the model is the amalgamation of anatomically accurate choroid plexuses with their feeding arteries and a simple relationship relaxing the constraint of a unique permeability for the CSF compartment. This was done in order to account for the Aquaporin-4-mediated swelling characteristics. The aim of this varying permeability compartment was to bring to light a feedback mechanism that could counteract the effects of ventricular dilation and subsequent elevations of CSF pressure through the efflux of excess CSF into the blood system. This model is used to demonstrate the impact of aqueductal stenosis and fourth ventricle outlet obstruction (FVOO). The implications of treating such a clinical condition with the aid of endoscopic third (ETV) and endoscopic fourth (EFV) ventriculostomy are considered. We observed peak CSF velocities in the aqueduct of the order of 15.6 cm/s in the healthy case, 45.4 cm/s and 72.8 cm/s for the mild and severe cases respectively. The application of ETV reduced the aqueductal velocity to levels around 16–17 cm/s. Ventricular displacement, CSF pressure, wall shear stress (WSS) and pressure difference between lateral and fourth ventricles (ΔP) increased with applied stenosis, and subsequently dropped to nominal levels with the application of ETV. The greatest reversal of the effects of atresia come by opting for ETV rather than the more complicated procedure of EFV

    Environmental Toxicity of Nanopesticides Against Non-Target Organisms: The State of the Art

    No full text

    Blood–brain barrier and foetal-onset hydrocephalus, with a view on potential novel treatments beyond managing CSF flow

    No full text

    The Toxicity of Nanoparticles to Organisms in Freshwater

    No full text
    corecore